Patterns of Element Incorporation in Calcium Carbonate Biominerals Recapitulate Phylogeny for a Diverse Range of Marine Calcifiers

International audience Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of t...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Ulrich, Robert, Guillermic, Maxence, Campbell, Julia, Hakim, Abbas, Han, Rachel, Singh, Shayleen, Stewart, Justin, Román-Palacios, Cristian, Carroll, Hannah, de Corte, Ilian, Gilmore, Rosaleen, Doss, Whitney, Tripati, Aradhna, Ries, Justin, Eagle, Robert A.
Other Authors: Department of Earth, Planetary and Space Sciences Los Angeles (EPSS), University of California Los Angeles (UCLA), University of California (UC)-University of California (UC), Department of Atmospheric and Oceanic Sciences Los Angeles (AOS), Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Interdisciplinary Graduate School for the Blue planet, ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.univ-brest.fr/hal-03263910
https://hal.univ-brest.fr/hal-03263910/document
https://hal.univ-brest.fr/hal-03263910/file/feart-09-641760.pdf
https://doi.org/10.3389/feart.2021.641760
Description
Summary:International audience Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy of the biomineral, and the pathways and mechanisms of biomineralization. Here we report measurements of a suite of nine elemental ratios (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Zn/Ca, Sr/Ca, Cd/Ca, Ba/Ca, and U/Ca) in 18 species of benthic marine invertebrates spanning a range of biogenic carbonate polymorph mineralogies (low-Mg calcite, high-Mg calcite, aragonite, mixed mineralogy) and of phyla (including Mollusca, Echinodermata, Arthropoda, Annelida, Cnidaria, Chlorophyta, and Rhodophyta) cultured at a single temperature (25°C) and a range of p CO 2 treatments (ca. 409, 606, 903, and 2856 ppm). This dataset was used to explore various controls over elemental partitioning in biogenic marine carbonates, including species-level and biomineralization-pathway-level controls, the influence of internal pH regulation compared to external pH changes, and biocalcification responses to changes in seawater carbonate chemistry. The dataset also enables exploration of broad scale phylogenetic patterns of elemental partitioning across calcifying species, exhibiting high phylogenetic signals estimated from both uni- and multivariate analyses of the elemental ratio data (univariate: λ = 0–0.889; multivariate: λ = 0.895–0.99). Comparing partial R 2 values returned from non-phylogenetic and phylogenetic regression analyses echo the importance of and show that phylogeny explains the elemental ratio data 1.4–59 times better than mineralogy in five out of nine of the elements analyzed. Therefore, the strong associations between biomineral elemental chemistry and species relatedness suggests mechanistic controls over element incorporation rooted in the evolution of ...