In situ measurements of Li isotopes in foraminifera

International audience In situ measurement of Li isotope ratios in foraminifera has been developed using a Cameca ims 1270 ion microprobe. In situ d 7 Li analyses have been performed in biogenic calcite of planktonic foraminifera from various locations. Results show that for west Pacific mixed Globi...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Vigier, Nathalie, Rollion-Bard, Claire, Spezzaferri, Silvia, Brunet, Fabrice
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
Online Access:https://hal.science/hal-03130874
https://hal.science/hal-03130874/document
https://hal.science/hal-03130874/file/2006GC001432.pdf
https://doi.org/10.1029/2006GC001432
Description
Summary:International audience In situ measurement of Li isotope ratios in foraminifera has been developed using a Cameca ims 1270 ion microprobe. In situ d 7 Li analyses have been performed in biogenic calcite of planktonic foraminifera from various locations. Results show that for west Pacific mixed Globigerinoides and Globorotalia (22°S161°E), the isotopic variability between tests and within a single test, respectively, is not significantly greater than estimated analytical uncertainty ($1.5%). Mean d 7 Li for several planktonic foraminifera tests corresponds to the seawater value, strongly suggesting negligible Li isotope fractionation relative to seawater, as previously inferred by Hall et al. (2005) using thermo-ionization mass spectrometer and multicollector-inductively coupled plasma-mass spectrometry techniques. Combined with scanning electron microscopy and ion microprobe imaging, micron-sized grains, enriched in lithium, silica and aluminum have been found in the foraminifera calcite matrix. A simple mixing model shows that 0.3-2 wt % of marine clays incorporated within the analyzed calcite would lower the foraminifera d 7 Li value, by 3% to 10% relative to the isotopic composition of the pure calcite. By comparison, no such grains have been detected in corals. The presence of micron-sized silicate grains embedded within the foraminifera calcite is consistent with the Erez (2003) biomineralization model, involving calcite precipitation from seawater vacuoles. By contrast, coral calcium carbonate is instead precipitated from ions, which have been pumped or diffused through several membranes, impermeable to micrometric grains. Ion microprobe in situ d 7 Li measurements in biogenic calcite present new methods for investigating both biomineralization processes and the past record of the ocean composition by exploring geochemical variations at a scale that is smaller in space and in time.