Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
International audience CMIP5, CMIP6, and ERA5 Antarctic precipitation is evaluated against CloudSat data. At continental and regional scales, ERA5 and the median CMIP models are biased high, with insignificant improvement from CMIP5 to CMIP6. However, there are fewer positive outliers in CMIP6. AMIP...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-02944705 https://hal.sorbonne-universite.fr/hal-02944705/document https://hal.sorbonne-universite.fr/hal-02944705/file/tc-14-2715-2020.pdf https://doi.org/10.5194/tc-14-2715-2020 |
Summary: | International audience CMIP5, CMIP6, and ERA5 Antarctic precipitation is evaluated against CloudSat data. At continental and regional scales, ERA5 and the median CMIP models are biased high, with insignificant improvement from CMIP5 to CMIP6. However, there are fewer positive outliers in CMIP6. AMIP configurations perform better than the coupled ones, and, surprisingly, relative errors in areas of complex topography are higher (up to 50 %) in the five higher-resolution models. The seasonal cycle is reproduced well by the median of the CMIP models, but not by ERA5. Progress from CMIP5 to CMIP6 being limited, there is still room for improvement. |
---|