Ice Concentration Retrieval from the Analysis of Microwaves: A New Methodology Designed for the Copernicus Imaging Microwave Radiometer

International audience Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. T...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Kilic, Lise, Prigent, Catherine, Aires, Filipe, Heygster, Georg, Pellet, Victor, Jiménez, Carlos
Other Authors: Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Geophysical Remote Sensing Lab (GEORG-Lab), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-02872345
https://hal.sorbonne-universite.fr/hal-02872345/document
https://hal.sorbonne-universite.fr/hal-02872345/file/remotesensing-12-01060-v2.pdf
https://doi.org/10.3390/rs12071060
Description
Summary:International audience Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.