The cratering history of asteroid (2867) Steins

International audience The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt...

Full description

Bibliographic Details
Published in:Planetary and Space Science
Main Authors: Marchi, S., Barbieri, C., Kuppers, M., Marzari, F., Davidsson, B., Keller, H. U., Besse, S., Lamy, P., Mottola, S., Massironi, M., Cremonese, Gabriele
Other Authors: Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.science/hal-01438937
https://doi.org/10.1016/j.pss.2010.03.017
Description
Summary:International audience The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors-like bulk structure and crater erasing-on the estimated age, which spans from a few hundred Myrs to more than 1 Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6 km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1 km wide impact crater near the south pole or to YORP reshaping. (C) 2010 Elsevier Ltd. All rights reserved.