Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in-situ instrumentation on balloon-sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidenc...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Khaykin, Sergey, Engel, I., Vömel, H., Formanyuk, I. M., Kivi, R., Korshunov, L. I., Krämer, M., Lykov, A. D., Meier, S., Naebert, T., Pitts, M. C., Santee, M. L., Spelten, N., Wienhold, F. G., Yushkov, V. A., Peter, T.
Other Authors: Central Aerological Observatory (CAO), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute for Atmospheric and Climate Science Zürich (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Lindenberg Meteorological Observatory - Richard Assmann Observatory (MOL-RAO), Deutscher Wetterdienst Offenbach (DWD), Finnish Meteorological Institute (FMI), Institut für Energie- und Klimaforschung - Stratosphäre (IEK-7), Forschungszentrum Jülich GmbH, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, NASA Langley Research Center Hampton (LaRC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-00829042
https://hal.science/hal-00829042/document
https://hal.science/hal-00829042/file/acp-13-11503-2013.pdf
https://doi.org/10.5194/acp-13-11503-2013
Description
Summary:We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in-situ instrumentation on balloon-sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice PSCs (polar stratospheric clouds) detected remotely by the lidar aboard the CALIPSO satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman-α hygrometers (CFH, FISH, FLASH) and backscatter sondes (COBALD) conducted in January 2010 within the LAPBIAT and RECONCILE campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km-thick layer below. Comparison with space-borne Aura MLS water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.