Modelled and projected decadal changes in the spatial distribution of C. finmarchicus.

International audience Calanus finmarchicus is a key-structural species of the North Atlantic polar biome. The species plays an important trophic role in subpolar and polar ecosystems as a grazer of phytoplankton and as a prey for higher trophic levels such as the larval stages of many fish species....

Full description

Bibliographic Details
Main Authors: Reygondeau, G., Beaugrand, Gregory
Other Authors: Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Nord )
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.science/hal-00759297
Description
Summary:International audience Calanus finmarchicus is a key-structural species of the North Atlantic polar biome. The species plays an important trophic role in subpolar and polar ecosystems as a grazer of phytoplankton and as a prey for higher trophic levels such as the larval stages of many fish species. Here, we used a recently developed ecological niche model to assess the ecological niche (sensu Hutchinson) of C. finmarchicus and characterize its spatial distribution. This model explained about 65% of the total variance of the observed spatial distribution inferred from an independent dataset (data of the continuous plankton recorder survey). Comparisons with other types of models (structured population and ecophysiological models) revealed a clear similarity between modeled spatial distributions at the scale of the North Atlantic. Contemporary models coupled with future projections indicated a progressive reduction of the spatial habitat of the species at the southern edge and a more pronounced one in the Georges Bank, the Scotian Shelf and the North Sea and a potential increase in abundance at the northern edge of its spatial distribution, especially in the Barents Sea. These major changes will probably lead to a major alteration of the trophodynamics of North Atlantic ecosystems affecting the trophodynamics and the biological carbon pump.