Mechanisms controlling primary and new production in a global ecosystem model ? Part II: the role of the upper ocean short-term periodic and episodic mixing events

International audience The use of 6 h, daily, weekly and monthly atmospheric forcing resulted in dramatically different predictions of plankton productivity in a global 3-D coupled physical-biogeochemical model. Resolving the diurnal cycle of atmospheric variability by use of 6 h forcing, and hence...

Full description

Bibliographic Details
Main Authors: Popova, E. E., Coward, A. C., Nurser, G. A., de Cuevas, B., Anderson, T. R.
Other Authors: National Oceanography Centre (NOC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
Online Access:https://hal.science/hal-00298406
https://hal.science/hal-00298406/document
https://hal.science/hal-00298406/file/osd-3-1115-2006.pdf
Description
Summary:International audience The use of 6 h, daily, weekly and monthly atmospheric forcing resulted in dramatically different predictions of plankton productivity in a global 3-D coupled physical-biogeochemical model. Resolving the diurnal cycle of atmospheric variability by use of 6 h forcing, and hence also diurnal variability in UML depth, produced the largest difference, reducing predicted global primary and new production by 25% and 10% respectively relative to that predicted with daily and weekly forcing. This decrease varied regionally, being a 30% reduction in equatorial areas and 25% at moderate and high latitudes. A 10% increase in the primary production was seen in the peripheries of the oligotrophic gyres. By resolving the diurnal cycle, model performance was significantly improved with respect to several common problems: underestimated primary production in the oligotrophic gyres; overestimated primary production in the Southern Ocean; overestimated magnitude of the spring bloom in the subarctic Pacific Ocean, and overestimated primary production in equatorial areas. The result of using 6 h forcing on predicted ecosystem dynamics was profound, the effects persisting far beyond the hourly timescale, and having major consequences for predicted global and new production on an annual basis.