Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia

International audience The operational numerical weather prediction model Lokalmodell LM with 7\,km horizontal resolution was evaluated for forecasting meteorological conditions during observed urban air pollution episodes. The resolution was increased to experimental 2.8 km and 1.1 km resolution by...

Full description

Bibliographic Details
Main Authors: Fay, B., Neunhäuserer, L.
Other Authors: Deutscher Wetterdienst Offenbach (DWD)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
Online Access:https://hal.science/hal-00295942
https://hal.science/hal-00295942/document
https://hal.science/hal-00295942/file/acp-6-2107-2006.pdf
Description
Summary:International audience The operational numerical weather prediction model Lokalmodell LM with 7\,km horizontal resolution was evaluated for forecasting meteorological conditions during observed urban air pollution episodes. The resolution was increased to experimental 2.8 km and 1.1 km resolution by one-way interactive nesting without introducing urbanisation of physiographic parameters or parameterisations. The episodes examined are two severe winter inversion-induced episodes in Helsinki in December 1995 and Oslo in January 2003, three suspended dust episodes in spring and autumn in Helsinki and Oslo, and a late-summer photochemical episode in the Valencia area. The evaluation was basically performed against observations and radiosoundings and focused on the LM skill at forecasting the key meteorological parameters characteristic for the specific episodes. These included temperature inversions, atmospheric stability and low wind speeds for the Scandinavian episodes and the development of mesoscale recirculations in the Valencia area. LM forecasts often improved due to higher model resolution especially in mountainous areas like Oslo and Valencia where features depending on topography like temperature, wind fields and mesoscale valley circulations were better described. At coastal stations especially in Helsinki, forecast gains were due to the improved physiographic parameters (land fraction, soil type, or roughness length). The Helsinki and Oslo winter inversions with extreme nocturnal inversion strengths of 18°C were not sufficiently predicted with all LM resolutions. In Helsinki, overprediction of surface temperatures and low-level wind speeds basically led to underpredicted inversion strength. In the Oslo episode, the situation was more complex involving erroneous temperature advection and mountain-induced effects for the higher resolutions. Possible explanations include the influence of the LM treatment of snow cover, sea ice and stability-dependence of transfer and diffusion coefficients. The LM ...