The banded terrain on northwestern Hellas Planitia: New observations and insights into its possible formation

Northwestern Hellas Planitia hosts landforms that are unique on Mars, e.g., the so called honeycomb and banded (aka "taffy pull") terrains. Recently, robust formation models for the ∼6 km large honeycomb depressions involving salt or ice diapirism have been formulated. However, the nature...

Full description

Bibliographic Details
Main Authors: Bernhardt, H., Reiss, D., Ivanov, M., Hauber, E., Hiesinger, H., Clark, J. D., OROSEI, ROBERTO
Other Authors: ITA, USA, DEU, RUS
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/20.500.12386/28602
https://doi.org/10.1016/j.icarus.2018.11.007
https://www.sciencedirect.com/science/article/abs/pii/S0019103518302847
Description
Summary:Northwestern Hellas Planitia hosts landforms that are unique on Mars, e.g., the so called honeycomb and banded (aka "taffy pull") terrains. Recently, robust formation models for the ∼6 km large honeycomb depressions involving salt or ice diapirism have been formulated. However, the nature of the banded terrain, a ∼30,000 km² area characterized by a decameter- to kilometer-scale pattern of curvilinear troughs, has remained elusive. While previous interpretations range from deep-seated, honeycomb-related outcrops to a younger veneer, recent reports of putative periglacial features (e.g., potential thermokarst) strongly indicate it to be a relatively thin, volatile-related surface unit. In order to further constrain the origin and nature of the banded terrain, we investigated the northwestern Hellas basin floor employing various datasets. We mapped the banded terrain's extent at high precision, showing that it partially superposes the honeycomb terrain, but also occurs up to ∼240 km away from it. Via stratigraphic analyses and crater size-frequency measurements, we bracketed the age of the banded terrain between ∼1.9 and ∼3.7 Ga. Furthermore, the banded terrain can be differentiated into two types, ridged and creviced, with the former predominantly occurring among the lowest reaches of the terrain's ∼2 km topographic extent. We also produced a grid map (2 × 2 km box size) of the entire banded terrain and identified no large-scale (> 25 km) band pattern and no correlation between local slope and band orientation. Because of this, we submit that regional tectonics or gravity-driven flow down modern topography are unlikely to have played decisive roles for banded terrain formation. Instead, we observed numerous locations, where band slabs appear to have broken off and subsequently rotated, as well as "cusps" that seem to have resulted from buckling. Based on this, we suggest that the banded terrain experienced both, ductile deformation as well as brittle failure on or near the surface. Despite certain similarities, ...