From CMIP3 to CMIP6: Northern Hemisphere Atmospheric Blocking Simulation in Present and Future Climate

International audience A comprehensive analysis of the representation of winter and summer Northern Hemisphere atmospheric blocking in global climate simulations in both present and future climate is presented. Three generations of climate models are considered: CMIP3 (2007), CMIP5 (2012), and CMIP6...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Davini, Paolo, d'Andrea, Fabio
Other Authors: Istituto di Scienze dell'Atmosfera e Del Clima Torino (isac), National Research Council of Italy, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02997133
https://hal.science/hal-02997133/document
https://hal.science/hal-02997133/file/%5B15200442%20-%20Journal%20of%20Climate%5D%20From%20CMIP3%20to%20CMIP6%20Northern%20Hemisphere%20Atmospheric%20Blocking%20Simulation%20in%20Present%20and%20Future%20Climate.pdf
https://doi.org/10.1175/JCLI-D-19-0862.1
Description
Summary:International audience A comprehensive analysis of the representation of winter and summer Northern Hemisphere atmospheric blocking in global climate simulations in both present and future climate is presented. Three generations of climate models are considered: CMIP3 (2007), CMIP5 (2012), and CMIP6 (2019). All models show common and extended underestimation of blocking frequencies, but a reduction of the negative biases in successive model generations is observed. However, in some specific regions and seasons such as the winter European sector, even CMIP6 models are not yet able to achieve the observed blocking frequency. For future decades the vast majority of models simulate a decrease of blocking frequency in both winter and summer, with the exception of summer blocking over the Urals and winter blocking over western North America. Winter predicted decreases may be even larger than currently estimated considering that models with larger blocking frequencies, and hence generally smaller errors, show larger reduction. Nonetheless, trends computed over the historical period are weak and often contrast with observations: this is particularly worrisome for summer Greenland blocking where models and observations significantly disagree. Finally, the intensity of global warming is related to blocking changes: wintertime European and North Pacific blocking are expected to decrease following larger global mean temperatures, while Ural summer blocking is expected to increase.