Quantum Entangled Fractional Topology and Curvatures

International audience We propose a two-spin quantum-mechanical model with applied magnetic fields acting on the Poincaré-Bloch sphere, to reveal a new class of topological energy bands with Chern number one half for each spin-1/2. The mechanism behind this fractional topology is a two-spin product...

Full description

Bibliographic Details
Published in:Communications Physics
Main Authors: Hutchinson, Joel, Hur, Karyn Le
Other Authors: Centre de Physique Théorique Palaiseau (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-02507659
https://doi.org/10.1038/s42005-021-00641-0
Description
Summary:International audience We propose a two-spin quantum-mechanical model with applied magnetic fields acting on the Poincaré-Bloch sphere, to reveal a new class of topological energy bands with Chern number one half for each spin-1/2. The mechanism behind this fractional topology is a two-spin product state at the north pole and a maximally entangled state close to the south pole. The fractional Chern number of each spin can be measured through the magnetizations at the poles. We study a precise protocol where the spin dynamics in time reflects the Landau-Zener physics associated with energy band crossing effects. We show a correspondence between the two-spin system and topological bilayer models on a honeycomb lattice. These models describe semimetals with a nodal ring surrounding the region of entanglement.