Element mobility patterns in magnetite-group IOCG systems: The Fab IOCG system, Northwest Territories, Canada.

This paper documents element mobility patterns from a magnetite-group Iron Oxide Copper–Gold (IOCG) prospect in the Northwest Territories of Canada and explores implications for space–time chemical evolution of metasomatic systems hosting IOCG deposits. The Fab system, located in the Great Bear magm...

Full description

Bibliographic Details
Published in:Ore Geology Reviews
Main Authors: Montreuil, Jean-François, Potter, Eric G., Corriveau, Louise, Davis, William J.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2016
Subjects:
Fab
Online Access:https://espace.inrs.ca/id/eprint/4354/
https://doi.org/10.1016/j.oregeorev.2015.08.010
Description
Summary:This paper documents element mobility patterns from a magnetite-group Iron Oxide Copper–Gold (IOCG) prospect in the Northwest Territories of Canada and explores implications for space–time chemical evolution of metasomatic systems hosting IOCG deposits. The Fab system, located in the Great Bear magmatic zone (GBMZ) of the Northwest Territories, Canada, contains numerous Fe–Cu–U showings associated with high temperature (HT) potassic–iron alteration overprinting extensive zones of sodic to HT calcic–iron alteration. Each hydrothermal alteration assemblage is associated with distinct element mobility patterns that record evolving physico-chemical properties of the hydrothermal fluids. New geochronological data constrain the alteration and IOCG mineralization in the Fab system to a 3 m.y. window between 1870–1867 Ma, which is broadly contemporaneous with extensive high-level intrusive activity across the GBMZ. Regional- to local-scale element mobility patterns characteristic of the sodic and sodic–calcic–iron alteration type record leaching combined with weak to strong mass losses. Pure sodic alteration depleted the rocks in Ca, Co, Cu, Fe, Mg, Th, U and V. Conversely, sodic–calcic–iron alteration records significant depletions of Nb, REE, Ta, Ti, Th and U. These element mobility patterns differ from intense HT calcic–iron alteration that is enriched in Ca, Co, F, Fe, Mg, Mn, Ni and V with modest enrichments to locally significant mineralization in Th, U and REE. HT calcic–iron alteration is also characterized by substantial mass gains that translate into volume gains in stockwork zones and mass/volume gains in zones of intense host rock replacement. HT potassic–iron alteration is characterized by enrichments in Ba, K, Ni, U and V, along with locally Co and Cu. The temporal and spatial association of the Fab system alteration and the emplacement of the porphyritic dacite are indicative of the predominant involvement of magmatic–hydrothermal fluids. The high F- and Cl- contents of the porphyritic dacite and of the ...