Impacts of high precipitation on the energy and water budgets of a humid boreal forest.

The boreal forest will be strongly affected by climate change and in turn, these vast ecosystems may significantly impact global climatology and hydrology due to their exchanges of carbon and water with the atmosphere. It is now crucial to understand the intricate relationships between precipitation...

Full description

Bibliographic Details
Published in:Agricultural and Forest Meteorology
Main Authors: Isabelle, Pierre-Erik, Nadeau, Daniel F., Anctil, François, Rousseau, Alain N., Jutras, Sylvain, Music, Biljana
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://espace.inrs.ca/id/eprint/10094/
https://espace.inrs.ca/id/eprint/10094/1/P3672.pdf
https://doi.org/10.1016/j.agrformet.2019.107813
Description
Summary:The boreal forest will be strongly affected by climate change and in turn, these vast ecosystems may significantly impact global climatology and hydrology due to their exchanges of carbon and water with the atmosphere. It is now crucial to understand the intricate relationships between precipitation and evapotranspiration in these environments, particularly in less-studied locations characterized by a cold and humid climate. This study presents state-of-the-art measurements of energy and water budgets components over three years (2016–2018) at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ∼1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Precipitation, evapotranspiration and potential evapotranspiration at the site are compared with observations from thirteen experimental sites around the world. These intercomparison sites (89 study-years) encompass various types of climate and vegetation (black spruces, jack pines, etc.) encountered in boreal forests worldwide. The Montmorency Forest stands out by receiving the largest amount of precipitation. Across all sites, water availability seems to be the principal evapotranspiration constraint, as precipitation tends to be more influential than potential evapotranspiration and other factors. This leads to the Montmorency Forest generating the largest amount of evapotranspiration, on average ∼550 mm y⁻¹. This value appears to be an ecosystem maximum for evapotranspiration, which may be explained either by a physiological limit or a limited energy availability due to the presence of cloud cover. The Montmorency Forest water budget evacuates the precipitation excess mostly by watershed discharges, at an average rate of ∼1050 mm y⁻¹, with peaks during the spring freshet. This behaviour, typical of mountainous headwater basins, necessarily influence downstream hydrological regimes to a large extent. This study provides a much needed insight in the hydrological regimes of a humid ...