Suprapermafrost groundwater transfers high concentrations of aged dissolved organic carbon to Greenlandic rivers

International audience Climate change is rapidly altering northern watersheds by disrupting large amounts of water and materials stored in glaciers, snow cover and permafrost. Permafrost thaw enhances the connectivity between surface and deeper water pathways and increases the suprapermafrost ground...

Full description

Bibliographic Details
Main Authors: Fouché, Julien, Bouchez, Camille, Haghipour, Negar
Other Authors: Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Geological Institute ETH Zürich, Department of Earth Sciences Swiss Federal Institute of Technology - ETH Zürich (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), IPA
Format: Conference Object
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://institut-agro-montpellier.hal.science/hal-04605462
Description
Summary:International audience Climate change is rapidly altering northern watersheds by disrupting large amounts of water and materials stored in glaciers, snow cover and permafrost. Permafrost thaw enhances the connectivity between surface and deeper water pathways and increases the suprapermafrost groundwater (SPGW) contribution to Arctic river discharge. SPGW, which can originate from permafrost thaw or infiltrated rain waters, participates to the transfer of water and carbon in Arctic catchments. However, the coupling of the water and carbon cycles in SPGW are not quantified, while it can modulate the permafrost climate feedback. Here, we investigate the origin and water transit time of SPGW and quantify and characterize dissolved organic matter (DOM) in the Zackenberg valley (Northeastern Greenland). We aim to quantify SPGW fluxes contribution to river water and carbon exports. In August 2021, we collected water samples from the glacio-nival Zackenberg river, its tributaries and a small nival headwater stream (Graense). SPGW was sampled from wells along transects from soils to river channels. Water samples were analysed for water isotopes (2H, 18O), dissolved gases (222-Rn, SF6, CFCs), dissolved organic carbon (DOC) concentration, radiocarbon ages (Δ 14 C), and DOM optical properties. A significant contribution of young-SPGW to rivers is estimated from dissolved gases. Contrasted DOC concentrations, DOM properties and Δ 14 C are observed between SPGW, hyporheic and river waters, with consistently higher concentrations and older DOC in subsurface flows. DOM optical properties evolve significantly from soils to rivers and along stream channels. Hyporheic waters displayed an enrichment in proteinaceous organic compounds illustrating their role as hotspots for microbial activity where intense DOM processing occurs. This dataset provides unique insights into SPGW role in hydrological and biogeochemical cycles in Arctic permafrost ecosystems.