The Ocean Reanalyses Intercom parison Project (ORA - IP)

Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncert...

Full description

Bibliographic Details
Published in:Journal of Operational Oceanography
Main Authors: Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y-S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J-F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer - Becker, K., Gaillard, F.
Other Authors: Balmaseda, M. A.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom, Hernandez, F.; nstitut de Recherche pour le Développement (IRD), Toulouse, France Mercator Océan, Ramonville Saint - Agne, France, Storto, A.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy, Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy, Palmer, M. D.; Met Office , Exeter, United Kingdom, Alves, O.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia, Shi, L.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia, Smith, G. C.; Environment Canada, Québec, Canada, Toyoda, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan, Valdivieso, M.; University of Reading (U - Reading), Reading, United Kingdom, Barnier, B.; Centre National de Recherche Scientifique (CN RS), Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France, Behringer, D.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA, Boyer, T.; NOAA/NODC, College Park , Maryland, Chang, Y-S.; Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA), Princeton, New Jer sey Department of Earth Science, Kongju National University, Kongju , South Korea, Chepurin, G. A.; epartment of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA, Ferry, N.; Mercator Océan, Ramonville Saint - Agne, France, Forget, G.; Program in Atmosphere, Ocean, and Climate, Massachusetts Institute of Technology, Fujii, Y.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan, Good, S.; Met Office , Exeter, United Kingdom, Guinehut, S.; Collecte Localisation Satellites (CLS), Ramonville Sa i nt - Agne, France, Haines, K.; University of Reading (U - Reading), Reading, United Kingdom, Ishikawa, Y.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan, Keeley, S.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom, Köhl, A.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany, Lee, T.; Jet Propulsion Laboratory (JPL) , California Institute of Technolog y, Pasadena, California, Martin, M.; Met Office , Exeter, United Kingdom, Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Masuda, S.; Research and Development Center for Global Change (RCGC), JAMSTEC, Yokosuka, Japan, Meyssignac, B.; Laboratoire d’Etudes en Géophysique et Océanographie Spatiale’ (LEGOS), Centre National d'Etudes Spatia les (CNES) in Toulouse, France., Mogensen, K.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom, Parent, L.; Mercator Océan, Ramonville Saint - Agne, France, Peterson, K. A.; Met Office , Exeter, United Kingdom, Tang, Y. M.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Met Office , Exeter, United Kingdom, Yin, Y.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia, Vernieres, G.; Goddard Space Flight Center, National Aeronautics and Space Administration (GSFC/NASA), Greenbelt, Maryland, Wang, X.; Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, Waters, J.; Met Office , Exeter, United Kingdom, Wedd, R.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia, Wang, O.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany, Xue, Y.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA, Chevallier, M.; CNRM - GAME, Météo - France, CNRS UMR3589, Toulouse, France, Lemieux, J-F.; Environment Canada, Québec, Canada, Dupont, F.; Environment Canada, Québec, Canada, Kuragano, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan, Kamachi, M.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan, Awaji, T.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan, Caltabiano, A.; I nternational CLIVAR Global Project Office, First Institute of Oceanography, State Oceanic Administration, China., Wilmer - Becker, K.; GODAE OceanView Pro ject Office, Met Office , Exeter, United Kingdom, Gaillard, F.; Laboratoire de Physique des Océans (LPO/IFREMER), France, European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
Ora
Online Access:http://hdl.handle.net/2122/9664
https://doi.org/10.1080/1755876X.2015.1022329
id ftingv:oai:www.earth-prints.org:2122/9664
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Global ocean–sea-ice modelling
Ocean model comparisons
DATA ASSIMILATION SCHEME
multi-analysis ensemble
Ocean climate
03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
spellingShingle Global ocean–sea-ice modelling
Ocean model comparisons
DATA ASSIMILATION SCHEME
multi-analysis ensemble
Ocean climate
03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
Balmaseda, M. A.
Hernandez, F.
Storto, A.
Palmer, M. D.
Alves, O.
Shi, L.
Smith, G. C.
Toyoda, T.
Valdivieso, M.
Barnier, B.
Behringer, D.
Boyer, T.
Chang, Y-S.
Chepurin, G. A.
Ferry, N.
Forget, G.
Fujii, Y.
Good, S.
Guinehut, S.
Haines, K.
Ishikawa, Y.
Keeley, S.
Köhl, A.
Lee, T.
Martin, M.
Masina, S.
Masuda, S.
Meyssignac, B.
Mogensen, K.
Parent, L.
Peterson, K. A.
Tang, Y. M.
Yin, Y.
Vernieres, G.
Wang, X.
Waters, J.
Wedd, R.
Wang, O.
Xue, Y.
Chevallier, M.
Lemieux, J-F.
Dupont, F.
Kuragano, T.
Kamachi, M.
Awaji, T.
Caltabiano, A.
Wilmer - Becker, K.
Gaillard, F.
The Ocean Reanalyses Intercom parison Project (ORA - IP)
topic_facet Global ocean–sea-ice modelling
Ocean model comparisons
DATA ASSIMILATION SCHEME
multi-analysis ensemble
Ocean climate
03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
description Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth,upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems. This work has been partially funded by the European Commission funded projects MyOcean, MyOcean2 and COMBINE; by the GEMINA project-funded bythe Italian Ministry for Environment; by the NERC-funded VALOR project; by the NERC-funded NCEO program; by the Research Program on Climate Change adaptation of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government; by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101); by NASA’s Modeling Analysis and Prediction Program under WBS 802678.02.17.01.25 and by the NASA Physical Oceanography Program; by the NOAA's Climate Observation Division (COD); by the LEFE/GMMC French national program. Published s80-s97 4A. Clima e Oceani JCR Journal open
author2 Balmaseda, M. A.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom
Hernandez, F.; nstitut de Recherche pour le Développement (IRD), Toulouse, France Mercator Océan, Ramonville Saint - Agne, France
Storto, A.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy
Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy
Palmer, M. D.; Met Office , Exeter, United Kingdom
Alves, O.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia
Shi, L.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia
Smith, G. C.; Environment Canada, Québec, Canada
Toyoda, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan
Valdivieso, M.; University of Reading (U - Reading), Reading, United Kingdom
Barnier, B.; Centre National de Recherche Scientifique (CN RS), Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France
Behringer, D.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA
Boyer, T.; NOAA/NODC, College Park , Maryland
Chang, Y-S.; Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA), Princeton, New Jer sey Department of Earth Science, Kongju National University, Kongju , South Korea
Chepurin, G. A.; epartment of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
Ferry, N.; Mercator Océan, Ramonville Saint - Agne, France
Forget, G.; Program in Atmosphere, Ocean, and Climate, Massachusetts Institute of Technology
Fujii, Y.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan
Good, S.; Met Office , Exeter, United Kingdom
Guinehut, S.; Collecte Localisation Satellites (CLS), Ramonville Sa i nt - Agne, France
Haines, K.; University of Reading (U - Reading), Reading, United Kingdom
Ishikawa, Y.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan
Keeley, S.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom
Köhl, A.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany
Lee, T.; Jet Propulsion Laboratory (JPL) , California Institute of Technolog y, Pasadena, California
Martin, M.; Met Office , Exeter, United Kingdom
Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Masuda, S.; Research and Development Center for Global Change (RCGC), JAMSTEC, Yokosuka, Japan
Meyssignac, B.; Laboratoire d’Etudes en Géophysique et Océanographie Spatiale’ (LEGOS), Centre National d'Etudes Spatia les (CNES) in Toulouse, France.
Mogensen, K.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom
Parent, L.; Mercator Océan, Ramonville Saint - Agne, France
Peterson, K. A.; Met Office , Exeter, United Kingdom
Tang, Y. M.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Met Office , Exeter, United Kingdom
Yin, Y.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia
Vernieres, G.; Goddard Space Flight Center, National Aeronautics and Space Administration (GSFC/NASA), Greenbelt, Maryland
Wang, X.; Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California
Waters, J.; Met Office , Exeter, United Kingdom
Wedd, R.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia
Wang, O.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany
Xue, Y.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA
Chevallier, M.; CNRM - GAME, Météo - France, CNRS UMR3589, Toulouse, France
Lemieux, J-F.; Environment Canada, Québec, Canada
Dupont, F.; Environment Canada, Québec, Canada
Kuragano, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan
Kamachi, M.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan
Awaji, T.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan
Caltabiano, A.; I nternational CLIVAR Global Project Office, First Institute of Oceanography, State Oceanic Administration, China.
Wilmer - Becker, K.; GODAE OceanView Pro ject Office, Met Office , Exeter, United Kingdom
Gaillard, F.; Laboratoire de Physique des Océans (LPO/IFREMER), France
European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom
format Article in Journal/Newspaper
author Balmaseda, M. A.
Hernandez, F.
Storto, A.
Palmer, M. D.
Alves, O.
Shi, L.
Smith, G. C.
Toyoda, T.
Valdivieso, M.
Barnier, B.
Behringer, D.
Boyer, T.
Chang, Y-S.
Chepurin, G. A.
Ferry, N.
Forget, G.
Fujii, Y.
Good, S.
Guinehut, S.
Haines, K.
Ishikawa, Y.
Keeley, S.
Köhl, A.
Lee, T.
Martin, M.
Masina, S.
Masuda, S.
Meyssignac, B.
Mogensen, K.
Parent, L.
Peterson, K. A.
Tang, Y. M.
Yin, Y.
Vernieres, G.
Wang, X.
Waters, J.
Wedd, R.
Wang, O.
Xue, Y.
Chevallier, M.
Lemieux, J-F.
Dupont, F.
Kuragano, T.
Kamachi, M.
Awaji, T.
Caltabiano, A.
Wilmer - Becker, K.
Gaillard, F.
author_facet Balmaseda, M. A.
Hernandez, F.
Storto, A.
Palmer, M. D.
Alves, O.
Shi, L.
Smith, G. C.
Toyoda, T.
Valdivieso, M.
Barnier, B.
Behringer, D.
Boyer, T.
Chang, Y-S.
Chepurin, G. A.
Ferry, N.
Forget, G.
Fujii, Y.
Good, S.
Guinehut, S.
Haines, K.
Ishikawa, Y.
Keeley, S.
Köhl, A.
Lee, T.
Martin, M.
Masina, S.
Masuda, S.
Meyssignac, B.
Mogensen, K.
Parent, L.
Peterson, K. A.
Tang, Y. M.
Yin, Y.
Vernieres, G.
Wang, X.
Waters, J.
Wedd, R.
Wang, O.
Xue, Y.
Chevallier, M.
Lemieux, J-F.
Dupont, F.
Kuragano, T.
Kamachi, M.
Awaji, T.
Caltabiano, A.
Wilmer - Becker, K.
Gaillard, F.
author_sort Balmaseda, M. A.
title The Ocean Reanalyses Intercom parison Project (ORA - IP)
title_short The Ocean Reanalyses Intercom parison Project (ORA - IP)
title_full The Ocean Reanalyses Intercom parison Project (ORA - IP)
title_fullStr The Ocean Reanalyses Intercom parison Project (ORA - IP)
title_full_unstemmed The Ocean Reanalyses Intercom parison Project (ORA - IP)
title_sort ocean reanalyses intercom parison project (ora - ip)
publishDate 2015
url http://hdl.handle.net/2122/9664
https://doi.org/10.1080/1755876X.2015.1022329
long_lat ENVELOPE(7.517,7.517,62.581,62.581)
geographic Ora
Southern Ocean
geographic_facet Ora
Southern Ocean
genre Arctic
Sea ice
Southern Ocean
genre_facet Arctic
Sea ice
Southern Ocean
op_relation Journal of Operational Oceanography
Sup 1/8 (2015)
http://www.researchgate.net/profile/Armin_Koehl/publication/266374001_The_Ocean_Reanalyses_Intercomparison_Project_%28ORA-IP%29/links/542d87a60cf27e39fa943880.pdf
647 1. Balmaseda MA and Coauthors. 2010. Role of the Ocean Observing System in an End-to- 648 End Seasonal Forecasting System. In Proceedings of OceanObs’09: Sustained Ocean 649 Observations and Information for Society (Vol. 1), Venice, Italy, 21-25 September 2009, 650 Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306, 651 doi:10.5270/OceanObs09.pp.03. 652 2. Dee DP, Balmaseda MA , Balsamo G, Engelen R, Simmons AJ and J.-N. Thépaut. 2014. 653 Toward a consistent reanalysis of the climate system. BAMS. e-View doi: 654 http://dx.doi.org/10.1175/BAMS-D-13-00043.1 655 3. Stammer D and Coauthors. 2010. Ocean Information Provided Through Ensemble Ocean 656 Syntheses. OceanObs’09: Sustained Ocean Observations and Information for Society. 657 doi:10.5270/OceanObs09.cwp.85. 658 4. Lee T, Awaji T, Balmaseda MA, Grenier E, and Stammer D. 2009. Ocean state 659 estimation for climate research. Oceanography, 22, 160–167. 660 doi:10.5670/oceanog.2009.74. 661 5. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MP, Smith DM, 662 Willis JK. 2010. Robust warming of the global upper ocean. Nature, 465, pp. 334-337, 663 doi:10.1038/nature09043. 664 6. Wijffels S, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church 665 JA. 2009. Changing expendable bathythermograph fall rates and their impact on 666 estimates of thermosteric sea level rise. J. Climate 21: 5657–5672. 667 7. Xue Y and Coauthors. 2010. Ocean state estimation for global ocean monitoring: ENSO 668 and beyond ENSO. In OceanObs'09: Conference on Sustained Ocean Observations and 669 Information for Society, vol. 2, Venice, 21–25 September 2009. Hall J, Harrison DE, 670 Stammer D. (eds). ESA publication WPP-306, DOI:10.5270/OceanObs09. 671 8. Masina S, Di Pietro P, Storto A and Navarra A. 2011. Global ocean re-analyses for 672 climate applications. Dyn. Atmos. Oceans, 52, (1-2), SI , 341-366, 673 doi:10.1016/j.dynatmoce.2011.03.006 674 9. Xue Y, and Coauthors, 2012: A Comparative Analysis of Upper-Ocean Heat Content 675 Variability from an Ensemble of Operational Ocean Reanalyses. J. Climate, 25, 6905– 676 6929. doi: http://dx.doi.org/10.1175/JCLI-D-11-00542.1 677 10. Zhu J, Huang B, Balmaseda MA. 2011. An ensemble estimation of the variability of 678 upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis 679 products. Clim. Dyn. in press. DOI:10.1007/s00382–011–1189–8. 680 11. Zhu J, Huang B, Marx L, Kinter III JL, Balmaseda MA, Zhang R-H, Hu Z-Z. 2012. 681 Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett. 682 39: L09602, DOI:10.1029/2012GL051503. 683 12. Zhu J, Huang B, Balmaseda MA, Kinter III JL, Peng P, Hu ZZ, Marx L. 2013. Improved 684 reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Clim. 685 Dyn. 11/2013; 41(9-10). DOI:10.1007/s00382-013-1965-8 686 13. Pohlmann H, Doug S, Balmaseda MA, Keenlyside NS, Masina S, Matei D, Muller WA, 687 Rogel P. 2013. Predictability of the mid-latitude Atlantic meridional overturning 688 circulation in a multi-model system. Clim. Dyn., 41, 10.1007/s00382-013-1663-6. 689 14. Bellucci A, Gualdi S, Masina S, Storto S, Scoccimarro E, Cagnazzo C, Fogli P, Manzini 690 E and Navarra A. 2013. Decadal climate predictions with a coupled AOGCM initialized 691 with oceanic reanalyses. Clim. Dyn., 40, 1483-1497. 692 15. Ferry N, Barnier B, Garric G, Haines K, Masina S, Parent L, Storto A , Valdivieso M, 693 Guinehut S and Mulet S. 2012. NEMO: the modeling engine of global ocean reanalyses. 694 Mercator Ocean Quarterly Newsletter 46, 46-59. 695 16. Crosnier L, and Le Provost C. 2006. Internal metrics definition for operational forecast 696 systems inter-comparison: Example in the North Atlantic and Mediterranean Sea. Ocean 697 Weather Forecasting. Springer Netherlands. 455-465. 698 17. Crosnier L, and Le Provost C. 2007. Inter-comparing five forecast operational systems in 699 the North Atlantic and Mediterranean basins: The MERSEA-strand1 Methodology." 700 Journal of Marine Systems 65.1, 354-375. 701 18. Xie J, Zhu J, and Li Y. 2008. Assessment and inter-comparison of five high-resolution sea 702 surface temperature products in the shelf and coastal seas around China. Continental 703 Shelf Research 28.10. 1286-1293. 704 19. Hernandez, F, Bertino L, Brassington G, Chassignet E, Cummings J, Davidson F, Drévillon 705 M, Garric G, Kamachi M, Lellouche J-M, Mahdon J, Martin M, Ratsimandresy R, and 706 Regnier C. 2009.Validation and intercomparison studies within GODAE. Oceanography 707 22(3):128–143, doi:10.5670/oceanog.2009.71. 708 20. Oke PR, Brassington G, Cummings J, Martin M, and Hernandez F. 2012. GODAE Inter- 709 comparisons in the Tasman and Coral Seas. Journal of Operational Oceanography 5.2, 710 11-24. 711 21. Herandez F, and Coauthors 2014. Performance evaluations, near real-time assessment of 712 operational oceanography forecast products. Journal of Operational Oceanography. This 713 issue. 714 22. Oke P, Martin M, Balmaseda MA, Brassington G and Wilmer-Becker K. 2011. Report on 715 the GODAE Ocean View - CLIVAR GSOP Workshop on Observing System Evaluation 716 and Intercomparison. https://www.godae-oceanview.org/outreach/meetings- 717 workshops/task-team-meetings/godae-oceanview-gsop-clivar-workshop/ 718 23. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng 719 MM, and Johnson DR. 2010. World Ocean Atlas 2009, Volume 1: Temperature. S. 720 Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, 721 D.C., 184 pp. 722 24. Guinehut S, Dhomps AL, Larnicol G and Le Traon PY. 2012. High resolution 3D 723 temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 724 8, 845-857, doi:10.5194/os-8-845-2012. 725 25. Mulet S, Rio MH, Mignot A, Guinehut S and Morrow R. 2012. A new estimate of the 726 global 3D geostrophic ocean circulation based on satellite data and in situ 727 measurements. Deep-Sea Res. II., 77-80, 70-81, doi:10.1016/j.dsr2.2012.04.012. 728 26. Saha S, and Coauthors. 2010. The NCEP climate forecast system reanalysis. Bull. Am. 729 Meteorol. Soc. 91: 1015–1057. 730 27. Xue Y, Huang B, Hu ZZ, Kumar A, Wen C, Behringer D, and Nadiga S. 2011. An 731 Assessment of Oceanic Variability in the NCEP Climate Forecast System Reanalysis. 732 Clim. Dyn., 37, 2511-2539. 733 734 28. Storto A, Dobricic S, Masina S, and Di Pietro P. 2011. Assimilating along-track 735 altimetric observations through local hydrostatic adjustments in a global ocean 736 reanalysis system. Mon. Wea. Rev., 139, 738-754. 737 29. Fukumori I. 2002. A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 1370- 738 1383. 739 30. Wunsch C and Heimbach P. 2013. Dynamically and Kinematically Consistent Global 740 Ocean Circulation and Ice State Estimates. Chapter 21 in "Ocean Circulation and Climate 741 - A 21st century perspective", International Geophysics Series, Vol.103. Edited by G. 742 Sielder, J. Church, S. Griffes, J. Gould, and J. Church. Academic Press, Elsevier. ISBN: 743 978-0-12-391851-2. 744 31. Speer K and Forget G. 2013. Global distribution and formation of mode waters. Chapter 745 9 in "Ocean Circulation and Climate - A 21st century perspective", International 746 Geophysics Series, Vol.103. Edited by G. Sielder, J. Church, S. Griffes, J. Gould, and J. 747 Church. Academic Press, Elsevier. ISBN: 978-0-12-391851-2 748 32. Ingleby B, and Huddleston M. 2007. Quality control of ocean temperature and salinity 749 profiles - historical and real-time data. Journal of Marine Systems. 65, 158-175 750 10.1016/j.jmarsys.2005.11.019 751 33. Köhl, A. 2014. Evaluation of the GECCO2 Ocean Synthesis: Transports of Volume, Heat 752 and Freshwater in the Atlantic. Q. J. R. Met. Soc.,doi:10.1002/qj.2347. 753 34. Zhang S., Harrison MJ, Rosati A, and Wittenberg AT. 2007. System design and 754 evaluation of coupled ensemble data assimilation for global oceanic climate studies. 755 Mon. Weather Rev., 135(10), doi:10.1175/MWR3466.1 756 35. Chang YS, Zhang S, Rosati A, Delworth TL, and Stern WF. 2013. An assessment of 757 oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation. 758 Clim. Dyn., 40(3-4), 775-803, doi:10.1007/s00382-012-1412-2. 759 36. Blockley E, and Coauthors. 2013. Recent development of the Met Office operational 760 ocean forecasting system: an overview and assessment of the new Global FOAM 761 forecasts, Geosci. Model Dev. Discuss., 6, 6219-6278, doi:10.5194/gmdd-6-6219-2013, 762 2013. 763 37. Waters J, Martin M, While J, Lea D, Weaver A, and Mirouze I. 2014. Implementing a 764 variational data assimilation system in an operational 1/4 degree global ocean model. 765 Submitted to Q. J. R. Meteorol. Soc. 766 38. Behringer DW. 2007. The global ocean data assimilation system at NCEP. Preprints, 767 11th Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, 768 and Land Surface, San Antonio, TX, Amer. Meteor. Soc., 3.3. [Available online at 769 https://ams.confex.com/ams/87ANNUAL/webprogram/Paper119541.html.] 770 39. Masuda S, and Coauthors. 2010. Simulated Rapid Warming of Abyssal North Pacific 771 Waters, Science, 329, 319-322, DOI, 10.1126/science.1188703. 772 40. Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, and 773 Ishikawa Y. 2008. Development of a four-dimensional variational coupled data 774 assimilation system for enhanced analysis and prediction of seasonal to interannual 775 climate variations, J. Geophys. Res., 113, C10017, doi:10.1029/2008JC004741. 776 41. Meyssignac B, Becker M, Llovel W, and Cazenave A. 2012. An assessment of two- 777 dimensional past sea level reconstructions over 1950-2009 based on tide gauge data and 778 different input sea level grids. Survey in Geophysics, online. doi :10.1007/s10712-011- 779 9171-x 780 42. Levitus S and Coauthors. 2012. World Ocean heat content and thermosteric sea level 781 change (0-2000 m) 1955-2010. Geophys. Res. Lett. , 39, L10603, 782 doi:10.1029/2012GL051106 783 43. Yin Y, Alves O, Oke PR. 2011. An ensemble ocean data assimilation system for seasonal 784 prediction. Mon. Weather Rev. 139: 786–808. 785 44. Balmaseda MA, Mogensen K, and Weaver AT. 2013. Evaluation of the ECMWF ocean 786 reanalysis system ORAS4. Q.J.R. Meteorol. Soc., 139: 1132–1161. doi:10.1002/qj.2063 787 45. Mogensen K, Balmaseda MA, Weaver AT. 2012. The NEMOVAR ocean data 788 assimilation system as implemented in the ECMWF ocean analysis for System 4. Tech. 789 Memo. 668. ECMWF: Reading, UK. 790 46. Fujii, Y, Nakaegawa N, Matsumoto S, Yasuda T, Yamanaka G, and Kamachi M. 2009. 791 Coupled climate simulation by constraining ocean fields in a coupled model with ocean 792 data. J. Clim., 22, 5541-5557. 793 47. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, and Kamachi M. 2013. 794 Improved analysis of the seasonal-interannual fields by a global ocean data assimilation 795 system. Theoretical and Applied Mechanics Japan, 61, 31-48, doi:10.11345/nctam.61.31. 796 48. Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, and Yamanaka G. 2011. 797 Simulating present climate of the global ocean-ice system using the Meteorological 798 Research Institute Community Ocean Model (MRI.COM): simulation characteristics and 799 variability in the Pacific sector. Journ. of Oceanogr., 67, 449-479. doi:10.1007/s10872- 800 011-0050-3. 801 49. Danabasoglu G, and Coauthors. 2013. North Atlantic simulations in Coordinated Ocean- 802 ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., in 803 press, http://dx.doi.org/10.1016/j.ocemod.2013.10.005. 804 50. Carton JA and Giese BS. 2008. A Reanalysis of Ocean Climate Using Simple Ocean Data 805 Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017. doi: 806 http://dx.doi.org/10.1175/2007MWR1978.1 807 51. Haines K, Valdivieso M, Zuo H, and Stepanov VN. 2012. Transports and budgets in a 808 1/4 ° global ocean reanalysis 1989–2010. Oce. Sci., 8 (3), 333-344, doi:10.5194/os-8- 809 333-2012.002/qj.2063. 810 52. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed 811 Time Products. CLS-DOS-NT-06-034, SALP-MU-P-EA-21065-CLS, v4.0, 69pp 812 (http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf). 813 53. Ablain M, and Coauthors. 2013. Two Decades of Global and Regional Sea Level 814 Observations from the ESA Climate Change Initiative Sea Level Project. ESA Living 815 Planet Symposium, Edinburgh, United Kingdom, 9–13 September, 2013 816 54. Palmer M, and Coauthors. 2014. CLIVAR-GSOP/GODAE intercomparison of ocean heat 817 content: initial results. CLIVAR EXCHANGES, 64. Feb 2014. 818 55. Balmaseda MA, Trenberth KE, and Kallen E. 2013. Distinctive climate signals in 819 reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 1754–1759, 820 doi:10.1002/grl.50382. 821 56. Palmer M, and Coauthors. 2010. Future Observations for Monitoring Global Ocean Heat 822 Content. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information 823 for Society (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison, D.E. & 824 Stammer, D., Eds., ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.68 825 57. Cazenave A, and Llovel W. 2010. Contemporary Sea Level rise. Annu. Rev. Mar. Sci., 2, 826 145–73. 827 58. Church JA and Coauthors. 2011. Revisiting the Earth's sea-level and energy budgets from 828 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794. 829 59. Storto A, and Coauthors. 2014. Comparison of Steric Sea Level from Ocean Reanalyses 830 and Objective Analyses. CLIVAR EXCHANGES, 64. Feb 2014. 831 832 60. Greatbatch R. 1994. A note on the representation of steric sea level in models that 833 conserve volume rather than mass, J. Geophys. Res., 99, 12767–12771. 834 61. Chambers DP, and Bonin JA. 2012. Evaluation of Release-05 GRACE time-variable 835 gravity coefficients over the ocean. Ocean Sci., 8, 859-868. 836 62. England MH. and Coauthors. 2014. Recent intensification of wind-driven circulation in 837 the Pacific and the ongoing warming hiatus. Nat. Clim. Change, 4, 222–227, 838 doi:10.1038/nclimate2106. 839 63. de Boisséson E., Balmaseda MA, Abdalla S, Källén E and Janssen PAEM. 2014. How 840 robust is the recent strengthening of the Tropical Pacific trade winds?. Geophys. Res. 841 Lett., 41, 4398–4405, doi:10.1002/2014GL060257. 842 64. Hernandez F, and Coauthors. 2014. Sea Level Inter-Comparison: Initial results. 843 CLIVAR EXCHANGES, 64. Feb 2014. 844 65. Yu L, Jin X, and Weller RA. 2008. Multidecade Global Flux Datasets from the 845 Objectively Analyzed Air–sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, 846 Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report 847 OAFlux Project (OA2008–01), Woods Hole Oceanographic Institution. 848 66. ZhangY, Rossow WB, Lacis AA, Oinas V, Mishchenk MI. 2004. Calculation of radiative 849 fluxes from the surface to top of atmosphere based on ISCCP and other global data sets. 850 Journal of Geophysical Research: Atmospheres (1984–2012) 109 (D19). 851 67. Berry DI and Kent EC. 2009. A New Air-Sea Interaction Gridded Dataset from ICOADS 852 with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 853 10.1175/2008BAMS2639.1. 854 68. Large W and Yeager S. 2009. The global climatology of an interannually varying air-sea 855 flux data set. Clim. Dynamics, Volume 33, 341-364. 856 69. Dee DP, and Coauthors. 2011. The ERA-Interim reanalysis: configuration and 857 performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553–597. doi: 858 10.1002/qj.828. 859 70. Kanamitsu M, Ebitsuzaki W, Woolen J, Yang SK, Hnilo JJ, Fiorino M, Potter G. 2002. 860 NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631–1643. 861 71. Uppala SM, and Coauthors. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 862 2961–3012. 863 72. Valdivieso M, and Coauthors. 2014. Heat fluxes from ocean and coupled reanalyses. 864 CLIVAR EXCHANGES, 64. Feb 2014. 865 73. Hosoda S, Ohira T, Sato K, and Suga T. 2010. Improved description of global mixed- 866 layer depth using Argo profiling floats. J. Oceanogr., 66, 773-787, doi:10.1007/s10872- 867 010-0063-3. 868 74. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, and Iudicone D. 2004. Mixed layer 869 depth over the global ocean: An examination of profile data and a profile-based 870 climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378. 871 75. Toyoda T, and Coauthors. 2014. Mixed layer depth intercomparison among global ocean 872 syntheses reanalyses. CLIVAR EXCHANGES, 64. Feb 2014. 873 76. Hasumi H, Tatebe H, Kawasaki T, Kurogi M, and Sakamoto TT. 2010. Progress of North 874 Pacific modeling over the past decade. Deep-Sea Res. II, 57, 1188-1200, 875 doi:10.1016/j.dsr2.2009.12.008. 876 77. Zhao M, Hendon HH, Alves O, Yin Y, and Anderson DLTA. 2013a. Impact of salinity 877 constraints on the simulated mean state and variability in a coupled seasonal forecast 878 model. Mon. Wea. Rev., 141, 388-402. 879 78. Zhao M, Hendon HH, Alves O, and Yin Y. 2013b. Impact of improved assimilation of 880 temperature and salinity for coupled model seasonal forecasts, Submitted to Mon. Wea. 881 Rev. 882 79. Alves O, and Coauthors. 2014. An Assessment of Upper Ocean Salinity Reanalyses from 883 CLIVAR GSOP/GODAE Systems. CLIVAR EXCHANGES, 64. Feb 2014. 884 80. Hernandez F, and Coauthors.2014. ORA-IP Depth of the 20°C isotherm: First results. 885 CLIVAR EXCHANGES, 64. Feb 2014. 886 81. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M. 2009. Adjoint 887 analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Let., 36(3). 888 82. Chevallier M, Salas y Melia D, Voldoire A, Deque M, and Garric G. 2013. Seasonal 889 Forecasts of the Pan-Arctic Sea Ice Extent Using a GCM Based Seasonal Prediction 890 System. J. Clim., 26, 6092–6104. doi:10.1175/JCLI-D-12-00612.1 891 83. Tang YM, Balmaseda MA, Mogensen KS, Keeley SPE, and P. A. E. M. Janssen PAEM. 892 2013. Sensitivity of sea ice thickness to observational constraints on sea ice 893 concentration, ECMWF Tech Memo Number 707. 894 84. Hunke EC, and Lipscomb WH. 2010. CICE: the Los Alamos sea ice model 895 documentation and software user’s manual version 4.1, Tech. Rep. LA-CC-06-012, Los 896 Alamos National Laboratory. 897 85. Fichefet, T., and Maqueda MAM. 1997. Sensitivity of a global seaice model to the 898 treatment of ice thermodynamics and dynamics. J. Geophys. Res. 102:12609-12646. 899 86. Martensson S, Meier HEM, Pemberton P, and Haapala J. 2012: Ridged sea ice 900 characteristics in the Arctic from a coupled multicategory sea ice model. J. of Geophys. 901 Res., 117(C8). 902 87. Kwok R, and Rothrock, DA. 2009. Decline in Arctic sea ice thickness from submarine 903 and ICESat records: 1958-2008, Geophys. Res. Let., 36 (15).
1755-8778
http://hdl.handle.net/2122/9664
doi:10.1080/1755876X.2015.1022329
op_rights open
op_doi https://doi.org/10.1080/1755876X.2015.1022329
container_title Journal of Operational Oceanography
container_volume 8
container_issue sup1
container_start_page s80
op_container_end_page s97
_version_ 1766302563081125888
spelling ftingv:oai:www.earth-prints.org:2122/9664 2023-05-15T14:28:23+02:00 The Ocean Reanalyses Intercom parison Project (ORA - IP) Balmaseda, M. A. Hernandez, F. Storto, A. Palmer, M. D. Alves, O. Shi, L. Smith, G. C. Toyoda, T. Valdivieso, M. Barnier, B. Behringer, D. Boyer, T. Chang, Y-S. Chepurin, G. A. Ferry, N. Forget, G. Fujii, Y. Good, S. Guinehut, S. Haines, K. Ishikawa, Y. Keeley, S. Köhl, A. Lee, T. Martin, M. Masina, S. Masuda, S. Meyssignac, B. Mogensen, K. Parent, L. Peterson, K. A. Tang, Y. M. Yin, Y. Vernieres, G. Wang, X. Waters, J. Wedd, R. Wang, O. Xue, Y. Chevallier, M. Lemieux, J-F. Dupont, F. Kuragano, T. Kamachi, M. Awaji, T. Caltabiano, A. Wilmer - Becker, K. Gaillard, F. Balmaseda, M. A.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Hernandez, F.; nstitut de Recherche pour le Développement (IRD), Toulouse, France Mercator Océan, Ramonville Saint - Agne, France Storto, A.; Ctr Euromediterraneo Cambiamenti Climat, Bologna, Italy Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy Palmer, M. D.; Met Office , Exeter, United Kingdom Alves, O.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia Shi, L.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia Smith, G. C.; Environment Canada, Québec, Canada Toyoda, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan Valdivieso, M.; University of Reading (U - Reading), Reading, United Kingdom Barnier, B.; Centre National de Recherche Scientifique (CN RS), Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France Behringer, D.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA Boyer, T.; NOAA/NODC, College Park , Maryland Chang, Y-S.; Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration (GFDL/NOAA), Princeton, New Jer sey Department of Earth Science, Kongju National University, Kongju , South Korea Chepurin, G. A.; epartment of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA Ferry, N.; Mercator Océan, Ramonville Saint - Agne, France Forget, G.; Program in Atmosphere, Ocean, and Climate, Massachusetts Institute of Technology Fujii, Y.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan Good, S.; Met Office , Exeter, United Kingdom Guinehut, S.; Collecte Localisation Satellites (CLS), Ramonville Sa i nt - Agne, France Haines, K.; University of Reading (U - Reading), Reading, United Kingdom Ishikawa, Y.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan Keeley, S.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Köhl, A.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany Lee, T.; Jet Propulsion Laboratory (JPL) , California Institute of Technolog y, Pasadena, California Martin, M.; Met Office , Exeter, United Kingdom Masina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Masuda, S.; Research and Development Center for Global Change (RCGC), JAMSTEC, Yokosuka, Japan Meyssignac, B.; Laboratoire d’Etudes en Géophysique et Océanographie Spatiale’ (LEGOS), Centre National d'Etudes Spatia les (CNES) in Toulouse, France. Mogensen, K.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Parent, L.; Mercator Océan, Ramonville Saint - Agne, France Peterson, K. A.; Met Office , Exeter, United Kingdom Tang, Y. M.; European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom Met Office , Exeter, United Kingdom Yin, Y.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia Vernieres, G.; Goddard Space Flight Center, National Aeronautics and Space Administration (GSFC/NASA), Greenbelt, Maryland Wang, X.; Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California Waters, J.; Met Office , Exeter, United Kingdom Wedd, R.; Centre for Australian Weather and Climate Research, Bureau of Meteorology (BOM), Melbourne, Australia Wang, O.; Universit ä t Hamburg (U - Hamburg), Hamburg, Germany Xue, Y.; C l imate Prediction Ce nter, NOAA/NWS/NCEP, Camp Springs, Maryland, USA Chevallier, M.; CNRM - GAME, Météo - France, CNRS UMR3589, Toulouse, France Lemieux, J-F.; Environment Canada, Québec, Canada Dupont, F.; Environment Canada, Québec, Canada Kuragano, T.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan Kamachi, M.; Meteorological Research Institute, Japan Meteorological Agency (MRI/JMA), Tsukuba, Japan Awaji, T.; Center for Earth Information Science and Technology, Japan Agency of Marine - Earth Science and Technology (CEIST/JAMSTEC), Yokohama, Japan Caltabiano, A.; I nternational CLIVAR Global Project Office, First Institute of Oceanography, State Oceanic Administration, China. Wilmer - Becker, K.; GODAE OceanView Pro ject Office, Met Office , Exeter, United Kingdom Gaillard, F.; Laboratoire de Physique des Océans (LPO/IFREMER), France European Centre for Medium - Range Weather Forecasts (ECMWF), Reading, United Kingdom 2015 http://hdl.handle.net/2122/9664 https://doi.org/10.1080/1755876X.2015.1022329 en eng Journal of Operational Oceanography Sup 1/8 (2015) http://www.researchgate.net/profile/Armin_Koehl/publication/266374001_The_Ocean_Reanalyses_Intercomparison_Project_%28ORA-IP%29/links/542d87a60cf27e39fa943880.pdf 647 1. Balmaseda MA and Coauthors. 2010. Role of the Ocean Observing System in an End-to- 648 End Seasonal Forecasting System. In Proceedings of OceanObs’09: Sustained Ocean 649 Observations and Information for Society (Vol. 1), Venice, Italy, 21-25 September 2009, 650 Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306, 651 doi:10.5270/OceanObs09.pp.03. 652 2. Dee DP, Balmaseda MA , Balsamo G, Engelen R, Simmons AJ and J.-N. Thépaut. 2014. 653 Toward a consistent reanalysis of the climate system. BAMS. e-View doi: 654 http://dx.doi.org/10.1175/BAMS-D-13-00043.1 655 3. Stammer D and Coauthors. 2010. Ocean Information Provided Through Ensemble Ocean 656 Syntheses. OceanObs’09: Sustained Ocean Observations and Information for Society. 657 doi:10.5270/OceanObs09.cwp.85. 658 4. Lee T, Awaji T, Balmaseda MA, Grenier E, and Stammer D. 2009. Ocean state 659 estimation for climate research. Oceanography, 22, 160–167. 660 doi:10.5670/oceanog.2009.74. 661 5. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MP, Smith DM, 662 Willis JK. 2010. Robust warming of the global upper ocean. Nature, 465, pp. 334-337, 663 doi:10.1038/nature09043. 664 6. Wijffels S, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church 665 JA. 2009. Changing expendable bathythermograph fall rates and their impact on 666 estimates of thermosteric sea level rise. J. Climate 21: 5657–5672. 667 7. Xue Y and Coauthors. 2010. Ocean state estimation for global ocean monitoring: ENSO 668 and beyond ENSO. In OceanObs'09: Conference on Sustained Ocean Observations and 669 Information for Society, vol. 2, Venice, 21–25 September 2009. Hall J, Harrison DE, 670 Stammer D. (eds). ESA publication WPP-306, DOI:10.5270/OceanObs09. 671 8. Masina S, Di Pietro P, Storto A and Navarra A. 2011. Global ocean re-analyses for 672 climate applications. Dyn. Atmos. Oceans, 52, (1-2), SI , 341-366, 673 doi:10.1016/j.dynatmoce.2011.03.006 674 9. Xue Y, and Coauthors, 2012: A Comparative Analysis of Upper-Ocean Heat Content 675 Variability from an Ensemble of Operational Ocean Reanalyses. J. Climate, 25, 6905– 676 6929. doi: http://dx.doi.org/10.1175/JCLI-D-11-00542.1 677 10. Zhu J, Huang B, Balmaseda MA. 2011. An ensemble estimation of the variability of 678 upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis 679 products. Clim. Dyn. in press. DOI:10.1007/s00382–011–1189–8. 680 11. Zhu J, Huang B, Marx L, Kinter III JL, Balmaseda MA, Zhang R-H, Hu Z-Z. 2012. 681 Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett. 682 39: L09602, DOI:10.1029/2012GL051503. 683 12. Zhu J, Huang B, Balmaseda MA, Kinter III JL, Peng P, Hu ZZ, Marx L. 2013. Improved 684 reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Clim. 685 Dyn. 11/2013; 41(9-10). DOI:10.1007/s00382-013-1965-8 686 13. Pohlmann H, Doug S, Balmaseda MA, Keenlyside NS, Masina S, Matei D, Muller WA, 687 Rogel P. 2013. Predictability of the mid-latitude Atlantic meridional overturning 688 circulation in a multi-model system. Clim. Dyn., 41, 10.1007/s00382-013-1663-6. 689 14. Bellucci A, Gualdi S, Masina S, Storto S, Scoccimarro E, Cagnazzo C, Fogli P, Manzini 690 E and Navarra A. 2013. Decadal climate predictions with a coupled AOGCM initialized 691 with oceanic reanalyses. Clim. Dyn., 40, 1483-1497. 692 15. Ferry N, Barnier B, Garric G, Haines K, Masina S, Parent L, Storto A , Valdivieso M, 693 Guinehut S and Mulet S. 2012. NEMO: the modeling engine of global ocean reanalyses. 694 Mercator Ocean Quarterly Newsletter 46, 46-59. 695 16. Crosnier L, and Le Provost C. 2006. Internal metrics definition for operational forecast 696 systems inter-comparison: Example in the North Atlantic and Mediterranean Sea. Ocean 697 Weather Forecasting. Springer Netherlands. 455-465. 698 17. Crosnier L, and Le Provost C. 2007. Inter-comparing five forecast operational systems in 699 the North Atlantic and Mediterranean basins: The MERSEA-strand1 Methodology." 700 Journal of Marine Systems 65.1, 354-375. 701 18. Xie J, Zhu J, and Li Y. 2008. Assessment and inter-comparison of five high-resolution sea 702 surface temperature products in the shelf and coastal seas around China. Continental 703 Shelf Research 28.10. 1286-1293. 704 19. Hernandez, F, Bertino L, Brassington G, Chassignet E, Cummings J, Davidson F, Drévillon 705 M, Garric G, Kamachi M, Lellouche J-M, Mahdon J, Martin M, Ratsimandresy R, and 706 Regnier C. 2009.Validation and intercomparison studies within GODAE. Oceanography 707 22(3):128–143, doi:10.5670/oceanog.2009.71. 708 20. Oke PR, Brassington G, Cummings J, Martin M, and Hernandez F. 2012. GODAE Inter- 709 comparisons in the Tasman and Coral Seas. Journal of Operational Oceanography 5.2, 710 11-24. 711 21. Herandez F, and Coauthors 2014. Performance evaluations, near real-time assessment of 712 operational oceanography forecast products. Journal of Operational Oceanography. This 713 issue. 714 22. Oke P, Martin M, Balmaseda MA, Brassington G and Wilmer-Becker K. 2011. Report on 715 the GODAE Ocean View - CLIVAR GSOP Workshop on Observing System Evaluation 716 and Intercomparison. https://www.godae-oceanview.org/outreach/meetings- 717 workshops/task-team-meetings/godae-oceanview-gsop-clivar-workshop/ 718 23. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng 719 MM, and Johnson DR. 2010. World Ocean Atlas 2009, Volume 1: Temperature. S. 720 Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, 721 D.C., 184 pp. 722 24. Guinehut S, Dhomps AL, Larnicol G and Le Traon PY. 2012. High resolution 3D 723 temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 724 8, 845-857, doi:10.5194/os-8-845-2012. 725 25. Mulet S, Rio MH, Mignot A, Guinehut S and Morrow R. 2012. A new estimate of the 726 global 3D geostrophic ocean circulation based on satellite data and in situ 727 measurements. Deep-Sea Res. II., 77-80, 70-81, doi:10.1016/j.dsr2.2012.04.012. 728 26. Saha S, and Coauthors. 2010. The NCEP climate forecast system reanalysis. Bull. Am. 729 Meteorol. Soc. 91: 1015–1057. 730 27. Xue Y, Huang B, Hu ZZ, Kumar A, Wen C, Behringer D, and Nadiga S. 2011. An 731 Assessment of Oceanic Variability in the NCEP Climate Forecast System Reanalysis. 732 Clim. Dyn., 37, 2511-2539. 733 734 28. Storto A, Dobricic S, Masina S, and Di Pietro P. 2011. Assimilating along-track 735 altimetric observations through local hydrostatic adjustments in a global ocean 736 reanalysis system. Mon. Wea. Rev., 139, 738-754. 737 29. Fukumori I. 2002. A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 1370- 738 1383. 739 30. Wunsch C and Heimbach P. 2013. Dynamically and Kinematically Consistent Global 740 Ocean Circulation and Ice State Estimates. Chapter 21 in "Ocean Circulation and Climate 741 - A 21st century perspective", International Geophysics Series, Vol.103. Edited by G. 742 Sielder, J. Church, S. Griffes, J. Gould, and J. Church. Academic Press, Elsevier. ISBN: 743 978-0-12-391851-2. 744 31. Speer K and Forget G. 2013. Global distribution and formation of mode waters. Chapter 745 9 in "Ocean Circulation and Climate - A 21st century perspective", International 746 Geophysics Series, Vol.103. Edited by G. Sielder, J. Church, S. Griffes, J. Gould, and J. 747 Church. Academic Press, Elsevier. ISBN: 978-0-12-391851-2 748 32. Ingleby B, and Huddleston M. 2007. Quality control of ocean temperature and salinity 749 profiles - historical and real-time data. Journal of Marine Systems. 65, 158-175 750 10.1016/j.jmarsys.2005.11.019 751 33. Köhl, A. 2014. Evaluation of the GECCO2 Ocean Synthesis: Transports of Volume, Heat 752 and Freshwater in the Atlantic. Q. J. R. Met. Soc.,doi:10.1002/qj.2347. 753 34. Zhang S., Harrison MJ, Rosati A, and Wittenberg AT. 2007. System design and 754 evaluation of coupled ensemble data assimilation for global oceanic climate studies. 755 Mon. Weather Rev., 135(10), doi:10.1175/MWR3466.1 756 35. Chang YS, Zhang S, Rosati A, Delworth TL, and Stern WF. 2013. An assessment of 757 oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation. 758 Clim. Dyn., 40(3-4), 775-803, doi:10.1007/s00382-012-1412-2. 759 36. Blockley E, and Coauthors. 2013. Recent development of the Met Office operational 760 ocean forecasting system: an overview and assessment of the new Global FOAM 761 forecasts, Geosci. Model Dev. Discuss., 6, 6219-6278, doi:10.5194/gmdd-6-6219-2013, 762 2013. 763 37. Waters J, Martin M, While J, Lea D, Weaver A, and Mirouze I. 2014. Implementing a 764 variational data assimilation system in an operational 1/4 degree global ocean model. 765 Submitted to Q. J. R. Meteorol. Soc. 766 38. Behringer DW. 2007. The global ocean data assimilation system at NCEP. Preprints, 767 11th Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, 768 and Land Surface, San Antonio, TX, Amer. Meteor. Soc., 3.3. [Available online at 769 https://ams.confex.com/ams/87ANNUAL/webprogram/Paper119541.html.] 770 39. Masuda S, and Coauthors. 2010. Simulated Rapid Warming of Abyssal North Pacific 771 Waters, Science, 329, 319-322, DOI, 10.1126/science.1188703. 772 40. Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, and 773 Ishikawa Y. 2008. Development of a four-dimensional variational coupled data 774 assimilation system for enhanced analysis and prediction of seasonal to interannual 775 climate variations, J. Geophys. Res., 113, C10017, doi:10.1029/2008JC004741. 776 41. Meyssignac B, Becker M, Llovel W, and Cazenave A. 2012. An assessment of two- 777 dimensional past sea level reconstructions over 1950-2009 based on tide gauge data and 778 different input sea level grids. Survey in Geophysics, online. doi :10.1007/s10712-011- 779 9171-x 780 42. Levitus S and Coauthors. 2012. World Ocean heat content and thermosteric sea level 781 change (0-2000 m) 1955-2010. Geophys. Res. Lett. , 39, L10603, 782 doi:10.1029/2012GL051106 783 43. Yin Y, Alves O, Oke PR. 2011. An ensemble ocean data assimilation system for seasonal 784 prediction. Mon. Weather Rev. 139: 786–808. 785 44. Balmaseda MA, Mogensen K, and Weaver AT. 2013. Evaluation of the ECMWF ocean 786 reanalysis system ORAS4. Q.J.R. Meteorol. Soc., 139: 1132–1161. doi:10.1002/qj.2063 787 45. Mogensen K, Balmaseda MA, Weaver AT. 2012. The NEMOVAR ocean data 788 assimilation system as implemented in the ECMWF ocean analysis for System 4. Tech. 789 Memo. 668. ECMWF: Reading, UK. 790 46. Fujii, Y, Nakaegawa N, Matsumoto S, Yasuda T, Yamanaka G, and Kamachi M. 2009. 791 Coupled climate simulation by constraining ocean fields in a coupled model with ocean 792 data. J. Clim., 22, 5541-5557. 793 47. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, and Kamachi M. 2013. 794 Improved analysis of the seasonal-interannual fields by a global ocean data assimilation 795 system. Theoretical and Applied Mechanics Japan, 61, 31-48, doi:10.11345/nctam.61.31. 796 48. Tsujino H, Hirabara M, Nakano H, Yasuda T, Motoi T, and Yamanaka G. 2011. 797 Simulating present climate of the global ocean-ice system using the Meteorological 798 Research Institute Community Ocean Model (MRI.COM): simulation characteristics and 799 variability in the Pacific sector. Journ. of Oceanogr., 67, 449-479. doi:10.1007/s10872- 800 011-0050-3. 801 49. Danabasoglu G, and Coauthors. 2013. North Atlantic simulations in Coordinated Ocean- 802 ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., in 803 press, http://dx.doi.org/10.1016/j.ocemod.2013.10.005. 804 50. Carton JA and Giese BS. 2008. A Reanalysis of Ocean Climate Using Simple Ocean Data 805 Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017. doi: 806 http://dx.doi.org/10.1175/2007MWR1978.1 807 51. Haines K, Valdivieso M, Zuo H, and Stepanov VN. 2012. Transports and budgets in a 808 1/4 ° global ocean reanalysis 1989–2010. Oce. Sci., 8 (3), 333-344, doi:10.5194/os-8- 809 333-2012.002/qj.2063. 810 52. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed 811 Time Products. CLS-DOS-NT-06-034, SALP-MU-P-EA-21065-CLS, v4.0, 69pp 812 (http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf). 813 53. Ablain M, and Coauthors. 2013. Two Decades of Global and Regional Sea Level 814 Observations from the ESA Climate Change Initiative Sea Level Project. ESA Living 815 Planet Symposium, Edinburgh, United Kingdom, 9–13 September, 2013 816 54. Palmer M, and Coauthors. 2014. CLIVAR-GSOP/GODAE intercomparison of ocean heat 817 content: initial results. CLIVAR EXCHANGES, 64. Feb 2014. 818 55. Balmaseda MA, Trenberth KE, and Kallen E. 2013. Distinctive climate signals in 819 reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 1754–1759, 820 doi:10.1002/grl.50382. 821 56. Palmer M, and Coauthors. 2010. Future Observations for Monitoring Global Ocean Heat 822 Content. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information 823 for Society (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison, D.E. & 824 Stammer, D., Eds., ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.68 825 57. Cazenave A, and Llovel W. 2010. Contemporary Sea Level rise. Annu. Rev. Mar. Sci., 2, 826 145–73. 827 58. Church JA and Coauthors. 2011. Revisiting the Earth's sea-level and energy budgets from 828 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794. 829 59. Storto A, and Coauthors. 2014. Comparison of Steric Sea Level from Ocean Reanalyses 830 and Objective Analyses. CLIVAR EXCHANGES, 64. Feb 2014. 831 832 60. Greatbatch R. 1994. A note on the representation of steric sea level in models that 833 conserve volume rather than mass, J. Geophys. Res., 99, 12767–12771. 834 61. Chambers DP, and Bonin JA. 2012. Evaluation of Release-05 GRACE time-variable 835 gravity coefficients over the ocean. Ocean Sci., 8, 859-868. 836 62. England MH. and Coauthors. 2014. Recent intensification of wind-driven circulation in 837 the Pacific and the ongoing warming hiatus. Nat. Clim. Change, 4, 222–227, 838 doi:10.1038/nclimate2106. 839 63. de Boisséson E., Balmaseda MA, Abdalla S, Källén E and Janssen PAEM. 2014. How 840 robust is the recent strengthening of the Tropical Pacific trade winds?. Geophys. Res. 841 Lett., 41, 4398–4405, doi:10.1002/2014GL060257. 842 64. Hernandez F, and Coauthors. 2014. Sea Level Inter-Comparison: Initial results. 843 CLIVAR EXCHANGES, 64. Feb 2014. 844 65. Yu L, Jin X, and Weller RA. 2008. Multidecade Global Flux Datasets from the 845 Objectively Analyzed Air–sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, 846 Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report 847 OAFlux Project (OA2008–01), Woods Hole Oceanographic Institution. 848 66. ZhangY, Rossow WB, Lacis AA, Oinas V, Mishchenk MI. 2004. Calculation of radiative 849 fluxes from the surface to top of atmosphere based on ISCCP and other global data sets. 850 Journal of Geophysical Research: Atmospheres (1984–2012) 109 (D19). 851 67. Berry DI and Kent EC. 2009. A New Air-Sea Interaction Gridded Dataset from ICOADS 852 with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 853 10.1175/2008BAMS2639.1. 854 68. Large W and Yeager S. 2009. The global climatology of an interannually varying air-sea 855 flux data set. Clim. Dynamics, Volume 33, 341-364. 856 69. Dee DP, and Coauthors. 2011. The ERA-Interim reanalysis: configuration and 857 performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553–597. doi: 858 10.1002/qj.828. 859 70. Kanamitsu M, Ebitsuzaki W, Woolen J, Yang SK, Hnilo JJ, Fiorino M, Potter G. 2002. 860 NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631–1643. 861 71. Uppala SM, and Coauthors. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 862 2961–3012. 863 72. Valdivieso M, and Coauthors. 2014. Heat fluxes from ocean and coupled reanalyses. 864 CLIVAR EXCHANGES, 64. Feb 2014. 865 73. Hosoda S, Ohira T, Sato K, and Suga T. 2010. Improved description of global mixed- 866 layer depth using Argo profiling floats. J. Oceanogr., 66, 773-787, doi:10.1007/s10872- 867 010-0063-3. 868 74. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, and Iudicone D. 2004. Mixed layer 869 depth over the global ocean: An examination of profile data and a profile-based 870 climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378. 871 75. Toyoda T, and Coauthors. 2014. Mixed layer depth intercomparison among global ocean 872 syntheses reanalyses. CLIVAR EXCHANGES, 64. Feb 2014. 873 76. Hasumi H, Tatebe H, Kawasaki T, Kurogi M, and Sakamoto TT. 2010. Progress of North 874 Pacific modeling over the past decade. Deep-Sea Res. II, 57, 1188-1200, 875 doi:10.1016/j.dsr2.2009.12.008. 876 77. Zhao M, Hendon HH, Alves O, Yin Y, and Anderson DLTA. 2013a. Impact of salinity 877 constraints on the simulated mean state and variability in a coupled seasonal forecast 878 model. Mon. Wea. Rev., 141, 388-402. 879 78. Zhao M, Hendon HH, Alves O, and Yin Y. 2013b. Impact of improved assimilation of 880 temperature and salinity for coupled model seasonal forecasts, Submitted to Mon. Wea. 881 Rev. 882 79. Alves O, and Coauthors. 2014. An Assessment of Upper Ocean Salinity Reanalyses from 883 CLIVAR GSOP/GODAE Systems. CLIVAR EXCHANGES, 64. Feb 2014. 884 80. Hernandez F, and Coauthors.2014. ORA-IP Depth of the 20°C isotherm: First results. 885 CLIVAR EXCHANGES, 64. Feb 2014. 886 81. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M. 2009. Adjoint 887 analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Let., 36(3). 888 82. Chevallier M, Salas y Melia D, Voldoire A, Deque M, and Garric G. 2013. Seasonal 889 Forecasts of the Pan-Arctic Sea Ice Extent Using a GCM Based Seasonal Prediction 890 System. J. Clim., 26, 6092–6104. doi:10.1175/JCLI-D-12-00612.1 891 83. Tang YM, Balmaseda MA, Mogensen KS, Keeley SPE, and P. A. E. M. Janssen PAEM. 892 2013. Sensitivity of sea ice thickness to observational constraints on sea ice 893 concentration, ECMWF Tech Memo Number 707. 894 84. Hunke EC, and Lipscomb WH. 2010. CICE: the Los Alamos sea ice model 895 documentation and software user’s manual version 4.1, Tech. Rep. LA-CC-06-012, Los 896 Alamos National Laboratory. 897 85. Fichefet, T., and Maqueda MAM. 1997. Sensitivity of a global seaice model to the 898 treatment of ice thermodynamics and dynamics. J. Geophys. Res. 102:12609-12646. 899 86. Martensson S, Meier HEM, Pemberton P, and Haapala J. 2012: Ridged sea ice 900 characteristics in the Arctic from a coupled multicategory sea ice model. J. of Geophys. 901 Res., 117(C8). 902 87. Kwok R, and Rothrock, DA. 2009. Decline in Arctic sea ice thickness from submarine 903 and ICESat records: 1958-2008, Geophys. Res. Let., 36 (15). 1755-8778 http://hdl.handle.net/2122/9664 doi:10.1080/1755876X.2015.1022329 open Global ocean–sea-ice modelling Ocean model comparisons DATA ASSIMILATION SCHEME multi-analysis ensemble Ocean climate 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis article 2015 ftingv https://doi.org/10.1080/1755876X.2015.1022329 2022-07-29T06:06:50Z Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth,upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems. This work has been partially funded by the European Commission funded projects MyOcean, MyOcean2 and COMBINE; by the GEMINA project-funded bythe Italian Ministry for Environment; by the NERC-funded VALOR project; by the NERC-funded NCEO program; by the Research Program on Climate Change adaptation of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government; by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101); by NASA’s Modeling Analysis and Prediction Program under WBS 802678.02.17.01.25 and by the NASA Physical Oceanography Program; by the NOAA's Climate Observation Division (COD); by the LEFE/GMMC French national program. Published s80-s97 4A. Clima e Oceani JCR Journal open Article in Journal/Newspaper Arctic Sea ice Southern Ocean Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Ora ENVELOPE(7.517,7.517,62.581,62.581) Southern Ocean Journal of Operational Oceanography 8 sup1 s80 s97