An end to the Last Interglacial highstand before 120 ka: Relative sea-level evidence from Infreschi Cave (Southern Italy)

The timing, duration and evolution of sea level during the Marine Isotope Stage 5e (MIS 5e) highstand is a subject of intense debate. A major problem in resolving this debate is the difficulty of chronologically constraining the sea level fall that followed the peak of the highstand. This was mainly...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Bini, Monica, Zanchetta, Giovanni, Drysdale, Russell N, Giaccio, Biagio, Stocchi, Paolo, Vacchi, Matteo, Hellstrom, John C., Couchoud, Isabelle, Monaco, Lorenzo, Ratti, Andrea, Martini, Fabio, Sarti, Lucia
Other Authors: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Dipartimento di Scienze della Terra, University of Pisa, Italy, School of Geography, The University of Melbourne, 3010, Victoria, Australia, stituto di Geologia Ambientale e Geoingegneria - CNR, Monterotondo, Rome, Italy, NIOZ - Royal Netherlands Institute for Sea Research, Coastal Systems (TX), And Utrecht University, P.O. Box 59, 1790, AB, Den Burg, Texel, the Netherlands, School of Earth Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia, Laboratoire EDYTEM, UMR CNRS 5204, Universite’Savoie Mont Blanc, Universite’Grenoble Alpes, 73376, Le Bourget du Lac, France, Dipartimento di Scienze Della Terra, Universit a La Sapienza di Roma, Rome, Ita, Dipartimento di Storia, Archeologia, Geografia, Arte e Spettacolo, University of Florence, Dipartimento di Scienze storiche e dei Beni culturali, University of Siena
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:http://hdl.handle.net/2122/14302
https://doi.org/10.1016/j.quascirev.2020.106658
Description
Summary:The timing, duration and evolution of sea level during the Marine Isotope Stage 5e (MIS 5e) highstand is a subject of intense debate. A major problem in resolving this debate is the difficulty of chronologically constraining the sea level fall that followed the peak of the highstand. This was mainly controlled by icesheet dynamics, the understanding of which is relevant for assessing future sea-level behavior due to global warming. Here we use stratigraphical and geochoronological (U/Th dating and tephra fingerprinting) evidence from the Infreschi archaeological cave (Marina di Camerota, Southern Italy) to constrain relative sea level (RSL) evolution during the MIS 5e highstand and younger stages. Uraniumthorium dating of speleothem deposition phases places the maximum highstand RSL at 8.90 ± 0.6 m a.s.l., as indicated by the near-horizontal upper limit of Lithophaga boreholes measured for along a ~3.5 km coastal cliff section. Geochronological data show that RSL fell more than 6 m before ~120 ka, suggesting a duration of the Last Interglacial highstand significantly shorter than proposed in some previous studies. Modelling shows that the RSL trend predicted by the ICE-5G and ICE-6G ice-sheet simulations is consistent with our data, but requires an additional significant reduction of both Greenland and Antarctic ice sheets to match the height of the local maximum highstand if no correction for tectonics is applied. Reconciling field data and models requires an earlier and likely shorter duration of the MIS 5e highstand. This suggests that our new data can constrain global ice-volume variations during the penultimate deglaciation, as well as glacial inception at the end of the Last Interglacial. According to our chronology, there is no local evidence of higher-than-present-day sea levels after 120 ka. Published 106658 5A. Ricerche polari e paleoclima JCR Journal