3D position tracking for all-terrain robots

Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other pl...

Full description

Bibliographic Details
Main Author: Lamon, Pierre
Format: Text
Language:English
Published: Lausanne, EPFL 2005
Subjects:
Online Access:http://infoscience.epfl.ch/record/33661
https://doi.org/10.5075/epfl-thesis-3192
https://infoscience.epfl.ch/record/33661/files/EPFL_TH3192.pdf
Description
Summary:Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requires the development of systems capable of reliably navigate with only partial information of the environment, with limited perception and locomotion capabilities. Amongst all the required functionalities, locomotion and position tracking are among the most critical. Indeed, the robot is not able to fulfill its task if an inappropriate locomotion concept and control is used, and global path planning fails if the rover loses track of its position. This thesis addresses both aspects, a) efficient locomotion and b) position tracking in rough terrain. The Autonomous System Lab developed an off-road rover (Shrimp) showing excellent climbing capabilities and surpassing most of the existing similar designs. Such an exceptional climbing performance enables an extension in the range of possible areas a robot could explore. In order to further improve the climbing capabilities and the locomotion efficiency, a control method minimizing wheel slip has been developed in this thesis. Unlike other control strategies, the proposed method does not require the use of soil models. Independence from these models is very significant because the ability to operate on different types of soils is the main requirement for exploration missions. Moreover, our approach can be adapted to any kind of wheeled rover and the processing power needed remains relatively low, which makes online computation feasible. In rough terrain, the problem of tracking the robot's position is tedious because of the excessive variation of the ground. Further, the field of ...