The contribution of remote sensing data for the detection of natural selection signatures in North American Grey Wolves

The current thesis constitutes an interdisciplinary approach of detecting a selection pressure driven by the environment examining the contribution of Remote Sensing and Spatial Analysis in the field of Landscape Genetics. Even though several studies have been attempting to link genetic and environm...

Full description

Bibliographic Details
Main Author: Samoili, Sofia
Format: Text
Language:unknown
Published: 2012
Subjects:
Online Access:http://infoscience.epfl.ch/record/175632
https://infoscience.epfl.ch/record/175632/files/Sophia%20Samoili%20Master%20Project%20Final.pdf
Description
Summary:The current thesis constitutes an interdisciplinary approach of detecting a selection pressure driven by the environment examining the contribution of Remote Sensing and Spatial Analysis in the field of Landscape Genetics. Even though several studies have been attempting to link genetic and environmental information so as to discover the genes that are being shaped by natural selection because of various interacted environmental factors, aspiring remote sensing derived parameters may have not been extensively exploited. This project aims to fill a part of this gap by analysing whether Remote Sensing data would provoke the emergence of significant gene-environment associations. A heterogeneous set of quantitative and qualitative data from a wide variety of sources with different data structures was collected and tested for potential associations between allelic frequencies at marker loci and environmental parameters in order to identify signatures of natural selection within genomes of North American grey wolves (Canis lupus). Emphasis was set to the inquiry of Normalized Difference Vegetation Index (NDVI) as novel candidate predictor in the evolutionary divergence of the sampled populations. The dataset that has been eventually analysed, consisted of genetic samples by microsatellites, and of two types environmental data, climatic and remote sensed (NDVI, altitude) that have been collected as monthly variables – when available – in order to scan for possible effect of seasonality on genetic data. The procession has been elaborated by Spatial Analysis Method (SAM) on 22 environmental and 523 genetic parameters. SAM requires georeferenced genetic data of the study population so as to retrieve information to characterize the sampling location and to correlate genetic parameters to one or more environmental parameters. The research is summarized in three phases. The first phase requires the desired information to be derived by the corresponding data using a Geographic Information System, so as to proceed to the ...