Recent warming and freshening of the Norwegian Sea observed by Argo data

Climate variability in the Norwegian Sea, comprising the Norwegian and Lofoten Basins, was investigated based upon monthly estimates of ocean heat and freshwater contents using data from Argo floats during 2002–18. Both local air–sea exchange and advective processes were examined and quantified for...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Mork, Kjell Arne, Skagseth, Øystein, Søiland, Henrik
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/11250/2637480
https://doi.org/10.1175/JCLI-D-18-0591.1
Description
Summary:Climate variability in the Norwegian Sea, comprising the Norwegian and Lofoten Basins, was investigated based upon monthly estimates of ocean heat and freshwater contents using data from Argo floats during 2002–18. Both local air–sea exchange and advective processes were examined and quantified for monthly to interannual time scales. In the recent years, 2011–18, the Norwegian Sea experienced a decoupling of the temperature and salinity, with a simultaneous warming and freshening trend. This was mainly explained by two different processes; reduced ocean heat loss to the atmosphere and advection of fresher Atlantic water into the Norwegian Sea. The local air–sea heat fluxes are important in modifying the ocean heat content, although this relationship varied with time scale and basins. On time scales exceeding 4 months in the Lofoten Basin and 6 months in the Norwegian Basin, the air–sea heat flux explained half or even more of the local ocean heat content change. There were both a short-term and long-term response of the wind forcing on the ocean heat content. The monthly to seasonal response of increased southerly wind cooled and freshened the Norwegian Basin, due to eastward surface Ekman transport, and increased the influence of Arctic Water. However, after about a 1-yr delay the ocean warmed and became saltier due to an increased advection of Atlantic Water into the region. Increased westerly winds decreased the ocean heat content in both cases due to increased transport of Arctic Water into the Norwegian Sea. publishedVersion