Investigating the development of clouds within marine cold air outbreaks

Marine cold air outbreaks are important parts of the high-latitude climate system, and are characterised by strong surface fluxes generated by the air-sea temperature gradient. These fluxes promote cloud formation, which can be identified in satellite imagery by the distinct transformation of strati...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Murray-Watson, R, Gryspeerdt, E, Goren, T
Format: Article in Journal/Newspaper
Language:unknown
Published: Copernicus Publications 2023
Subjects:
Online Access:http://hdl.handle.net/10044/1/106014
https://doi.org/10.5194/acp-23-9365-2023
Description
Summary:Marine cold air outbreaks are important parts of the high-latitude climate system, and are characterised by strong surface fluxes generated by the air-sea temperature gradient. These fluxes promote cloud formation, which can be identified in satellite imagery by the distinct transformation of stratiform cloud ‘streets’ into a broken field of cumuliform clouds downwind of the outbreak. This evolution in cloud morphology changes the radiative properties of the cloud, and therefore is of importance to the surface energy budget. While the drivers of stratocumulus-to-cumulus transitions, such as aerosols or the sea surface temperature gradient, have been extensively studied for subtropical clouds, the factors influencing transitions at higher latitudes are relatively poorly understood. This work uses reanalysis data to create a set of composite trajectories of cold air outbreaks moving off the Arctic ice edge and co-locates these trajectories with satellite data to generate a unique view of liquid-dominated cloud development within cold air outbreaks. The results of this analysis show that clouds embedded in cold-air outbreaks have distinctive properties relative to clouds following other trajectories in the region. The initial strength of the outbreak shows a lasting effect on cloud properties, with differences between clouds in strong and weak events visible over 30 hours after the air has left the ice edge. However, while the strength (measured by the magnitude of the marine cold-air outbreak index) of the outbreak affects the magnitude of cloud properties, it does not affect the timing of the transition to cumuliform clouds nor the top-of-atmosphere albedo. In contrast, the initial aerosol conditions do not strongly affect the magnitude of the cloud properties, but are correlated to cloud break-up, leading to an enhanced cooling effect in clouds moving through high aerosol conditions due to delayed break-up. Both the aerosol environment and the strength and frequency of marine cold air outbreaks are expected to ...