Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications

Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satell...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Heim, B., Abramova, E., Doerffer, R., Günther, F., Hölemann, J., Kraberg, A., Lantuit, H., Loginova, A., Martynov, F., Overduin, P.P., Wegner, C.
Format: Article in Journal/Newspaper
Language:English
Published: EGU - Copernicus Publication 2014
Subjects:
Online Access:https://publications.hereon.de/id/39677
https://publications.hzg.de/id/39677
https://doi.org/10.5194/bg-11-4191-2014
Description
Summary:Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT.Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian-German ship expeditions LENA2008,LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies,due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter.We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The matchup analyses using the data from the marine TRANSDRIFT expedition were constrained by several days\' difference between a match-up pair of satellite-derived and in situ parameters but are also based on the more stable hydrodynamic conditions of the ...