Climatic response of thermally coupled solar water splitting in Antarctica

Hydrogen is a versatile energy carrier. When produced with renewable energy by water splitting, it is a carbon neutral alternative to fossil fuels. The industrialization process of this technology is currently dominated by electrolyzers powered by solar or wind energy. For small scale applications,...

Full description

Bibliographic Details
Main Authors: Kölbach, Moritz, Höhn, Oliver, Barry, James, Finkbeiner, Manuel, Rehfeld, Kira, May, Matthias M.
Format: Conference Object
Language:English
Published: Hochschule Bonn-Rhein-Sieg 2022
Subjects:
Online Access:https://pub.h-brs.de/frontdoor/index/index/docId/6199
https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-61992
https://pub.h-brs.de/files/6199/EGU22-11608.pdf
Description
Summary:Hydrogen is a versatile energy carrier. When produced with renewable energy by water splitting, it is a carbon neutral alternative to fossil fuels. The industrialization process of this technology is currently dominated by electrolyzers powered by solar or wind energy. For small scale applications, however, more integrated device designs for water splitting using solar energy might optimize hydrogen production due to lower balance of system costs and a smarter thermal management. Such devices offer the opportunity to thermally couple the solar cell and the electrochemical compartment. In this way, heat losses in the absorber can be turned into an efficiency boost for the device via simultaneously enhancing the catalytic performance of the water splitting reactions, cooling the absorber, and decreasing the ohmic losses.[1,2] However,integrated devices (sometimes also referred to as “artificial leaves”), currently suffer from a lower technology readiness level (TRL) than the completely decoupled approach.