Predictability of the Barents Sea Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal Conditions from the North Atlantic

Predictability of sea ice concentrations (SICs) in the Barents Sea in early winter (November–December) is studied using canonical correlation analysis with atmospheric and ocean anomalies from the NCEP Climate Forecast SystemReanalysis (CFSR) data. It is found that the highest prediction skill for a...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Nakanowatari, Takuya, Sato, Kazutoshi, Inoue, Jun
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society
Subjects:
Online Access:http://hdl.handle.net/2115/59468
https://doi.org/10.1175/JCLI-D-14-00125.1
Description
Summary:Predictability of sea ice concentrations (SICs) in the Barents Sea in early winter (November–December) is studied using canonical correlation analysis with atmospheric and ocean anomalies from the NCEP Climate Forecast SystemReanalysis (CFSR) data. It is found that the highest prediction skill for a single-predictormodel is obtained from the 13-month lead subsurface temperature at 200-m depth (T200) and the in-phase meridional surface wind (Vsfc). T200 skillfully predicts SIC variability in 35% of the Barents Sea, mainly in the eastern side. The T200 for negative sea ice anomalies exhibits warm anomalies in the subsurface ocean temperature downstream of the Norwegian Atlantic Slope Current (NwASC) on a decadal time scale. The diagnostic analysis of NCEP CFSR data suggests that the subsurface temperature anomaly stored below the thermocline during summer reemerges in late autumn by atmospheric cooling and affects the sea ice. The subsurface temperature anomaly of the NwASC is advected from the North Atlantic subpolar gyre over ;3 years. Also, Vsfc skillfully predicts SIC variability in 32% of the Barents Sea, mainly in the western side. The Vsfc for the negative sea ice anomalies exhibits southerly wind anomalies; Vsfc is related to the large-scale atmospheric circulation patterns from the subtropical North Atlantic to the Eurasian continent. This study suggests that both atmospheric and oceanic remote effects have a potential impact on the forecasting accuracy of SIC.