Mesozooplankton response to iron enrichment during the diatom bloom and bloom decline in SERIES (NE Pacific)

A mesoscale iron-fertilization experiment was carried out in the eastern subarctic Pacific during summer 2002. The iron patch was traced for 26 days after the enrichment, and the abundance and behavior of mesozooplankton was compared with those outside of the patch during the first half of the exper...

Full description

Bibliographic Details
Published in:Deep Sea Research Part II: Topical Studies in Oceanography
Main Authors: Tsuda, Atsushi, Saito, Hiroaki, Nishioka, Jun, Ono, Tsuneo, Noiri, Yoshifumi, Kudo, Isao
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Ltd
Subjects:
468
Online Access:http://hdl.handle.net/2115/17204
https://doi.org/10.1016/j.dsr2.2006.05.041
Description
Summary:A mesoscale iron-fertilization experiment was carried out in the eastern subarctic Pacific during summer 2002. The iron patch was traced for 26 days after the enrichment, and the abundance and behavior of mesozooplankton was compared with those outside of the patch during the first half of the experiment (days 2–18) by Sastri and Dower [2006. Mesozooplankton community response during the SERIES iron enrichment experiment in the subarctic NE Pacific. Deep-Sea Research Part II.) and during the post-enrichment diatom bloom and its period of decline (days 15–26; this paper). The surface chlorophyll-a concentration in the patch was high between days 15 and 17 (6 mg m−3) and decreased to 1.4 mg m−3 at the end of the observation. Dominant zooplankton species in the upper 200 m were copepods: Eucalanus bungii, Pseudocalanus spp., Neocalanus plumchrus, N. cristatus, and Metridia pacifica. Species composition did not change significantly in the patch over the observation period. However, shallower distribution depths of E. bungii, N. cristatus and M. pacifica were observed in the patch during and after the diatom bloom. Especially, E. bungii was mainly distributed in the subsurface layer outside of the patch, but it was mainly in the surface mixed layer inside the patch, where it also had an enhanced development rate and increased biomass. We also propose the accumulation mechanism of zooplankton in the patch due to the upward immigration. Moreover, the abundance of the first copepodite stage of E. bungii and calyptopis larvae of euphausiids increased several fold in the patch compared to the densities outside the patch. The increases in both species are considered to be due to lowered mortality during the egg and naupliar stages, which was caused by lowered relative importance of eggs and nauplii in the diets of the suspension-feeding omnivores in the patch due to increased diatom abundance during the diatom bloom. Gut-pigment contents of dominant copepods in the patch increased 6–8 times, and the maximum values were ...