Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata Peels, as Potential Biopesticide for Controlling Pathogens and Wetland Plants in Aquatic Media

In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs) gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is ve...

Full description

Bibliographic Details
Published in:Journal of Nanomaterials
Main Authors: Marcela Elisabeta Barbinta-Patrascu, Nicoleta Badea, Camelia Ungureanu, Stefan Marian Iordache, Marioara Constantin, Violeta Purcar, Ileana Rau, Cristian Pirvu
Format: Article in Journal/Newspaper
Language:English
Published: Journal of Nanomaterials 2017
Subjects:
Online Access:https://doi.org/10.1155/2017/4214017
Description
Summary:In recent years, a considerable interest was paid to ecological strategies in management of plant diseases and plant growth. Metallic nanoparticles (MNPs) gained considerable interest as alternative to pesticides due to their interesting properties. Green synthesis of MNPs using plant extracts is very advantageous taking into account the fact that plants are easily available and eco-friendly and possess many phytocompounds that help in bioreduction of metal ions. In this research work, we phytosynthesized AgNPs from aqueous extract of Citrus reticulata peels, with high antioxidant, antibacterial, and antifungal potential. These “green” AgNPs were characterized by modern biophysical methods (absorption and FTIR spectroscopy, AFM, and zeta potential measurements). The nanobioimpact of Citrus-based AgNPs on four invasive wetland plants, Cattail (Typha latifolia), Flowering-rush (Butomus umbellatus), Duckweed (Lemna minor), and Water-pepper (Polygonum hydropiper), was studied by absorption spectroscopy, by monitoring the spectral signature of chlorophyll. The invasive plants exhibited different behavior under AgNP stress. Deep insights were obtained from experiments conducted on biomimetic membranes marked with chlorophyll a. Our results pointed out the potential use of Citrus-based AgNPs as alternative in controlling pathogens in aqueous media and in management of aquatic weeds growth.