A Partial Record of Mixing of Mantle Melts Preserved in Icelandic Phenocrysts

The record of mixing of mantle melts in magma chambers has previously been observed in the compositions of olivine-hosted melt inclusions from Borgarhraun, a primitive basalt flow from the Theistareykir volcanic system, northern Iceland. Borgarhraun also contains high Mg-number (85–92) clinopyroxene...

Full description

Bibliographic Details
Published in:Journal of Petrology
Main Authors: Winpenny, Ben, Maclennan, John
Format: Text
Language:English
Published: Oxford University Press 2011
Subjects:
Online Access:http://petrology.oxfordjournals.org/cgi/content/short/52/9/1791
https://doi.org/10.1093/petrology/egr031
Description
Summary:The record of mixing of mantle melts in magma chambers has previously been observed in the compositions of olivine-hosted melt inclusions from Borgarhraun, a primitive basalt flow from the Theistareykir volcanic system, northern Iceland. Borgarhraun also contains high Mg-number (85–92) clinopyroxenes, which exist in polycrystalline nodules and as phenocrysts. Coincident major and trace element analyses were made in compositional zones of these clinopyroxenes, and Ce/Yb ratios of the melts in chemical equilibrium with each of the clinopyroxene zones were calculated using carefully selected crystal–melt partition coefficients. These calculations allow direct comparison of clinopyroxene compositions with existing melt inclusion data. The range of Ce/Yb ratios in the crystals and in the equilibrium melts cannot be accounted for by crystallization alone, requiring simultaneous mixing and crystallization of compositionally variable mantle melts. However, the range in Ce/Yb for melts in equilibrium with these high Mg-number clinopyroxenes is smaller than that of melt inclusions hosted by olivines with equivalent Fo contents. Also, the mean composition of the melts from which clinopyroxene grew has significantly lower Ce/Yb than the olivine-hosted melt inclusions. The record of mantle melt variability in clinopyroxenes is thus biased towards more depleted (low Ce/Yb) melt compositions. This bias can be understood if the trace element variation in the Borgarhraun parental melts is coupled to major element variation, as expected from petrological parameterizations of mantle melting. The major element variation influences the phase relationships and controls the appearance of liquidus phases during fractional crystallization in near-Moho magma chambers. Small-degree, deep melts, formed in the presence of garnet, have high Ce/Yb ratios. On cooling, these melts have a longer olivine-only crystallization path than melts derived from the shallow mantle. When these deep-sourced melts eventually become clinopyroxene saturated, ...