Cell growth arrest by sialic acid clusters in ganglioside GM3 mimetic polymers

Ganglioside GM3, one of the sialic acid containing glycosphingolipids, is known to form clusters in lipid microdomains, which serve as platforms for effective signal transduction. In an attempt to clarify the GM3 cluster effect, we enzymatically synthesized GM3 mimetic polymer (GM3-p), with an acryl...

Full description

Bibliographic Details
Published in:Glycobiology
Main Authors: Uemura, Satoshi, Feng, Fei, Kume, Maya, Yamada, Kuriko, Kabayama, Kazuya, Nishimura, Shin-Ichiro, Igarashi, Yasuyuki, Inokuchi, Jin-Ichi
Format: Text
Language:English
Published: Oxford University Press 2007
Subjects:
Online Access:http://glycob.oxfordjournals.org/cgi/content/short/17/6/568
https://doi.org/10.1093/glycob/cwm020
Description
Summary:Ganglioside GM3, one of the sialic acid containing glycosphingolipids, is known to form clusters in lipid microdomains, which serve as platforms for effective signal transduction. In an attempt to clarify the GM3 cluster effect, we enzymatically synthesized GM3 mimetic polymer (GM3-p), with an acrylamide backbone from LacCer mimetic polymer (LacCer-p). Interestingly, GM3-p, but not LacCer-p, reversibly inhibited proliferation of NIH3T3 cells, which are normally resistant to exogenously added GM3. Moreover, we found that the introduction of carbonic acid into the acrylamide chain aided well-oriented cluster formation and enhanced the inhibitory effect of GM3-p. Since sialyllactosyl polymer and GM4 mimetic polymer, but not GM2 mimetic polymer, also inhibited cell proliferation, sialic acid-galactose units must be essential for the biological activity of GM3-p. These results suggest that the formation of sialic acid-galactose clusters is necessary for the suppressive effect of GM3-p. GM3-p treatment did not affect the serum-dependent activation of ERK1/2 or c-fos expression, but caused a reduction in the gene and/or protein expression of cyclin D1, cyclin E, cyclin-dependent kinase (cdk)4, and cdk2, which are involved in the cell cycle. Therefore, GM3-p inhibits cell proliferation by reducing cyclin D1-cdk4 and cyclin E-cdk2 complexes without affecting growth factor signaling from serum to c-fos.