High-resolution magnetotelluric studies of the Archaean-Proterozoic border zone in the Fennoscandian Shield, Finland

The Archaean-Proterozoic collisional zone is a complex mixture of the Archaean complexes [e.g. Iisalmi Complex (IC)], Proterozoic supracrustal belts [e.g. Kainuu Belt (KB) and Savo Belt (SB)] and oceanic arc lithologies in the central Fennoscandian Shield. The zone was formed in the Savo orogeny whe...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Vaittinen, K., Korja, T., Kaikkonen, P., Lahti, I., Smirnov, M. Yu.
Format: Text
Language:English
Published: Oxford University Press 2012
Subjects:
Online Access:http://gji.oxfordjournals.org/cgi/content/short/188/3/908
https://doi.org/10.1111/j.1365-246X.2011.05300.x
Description
Summary:The Archaean-Proterozoic collisional zone is a complex mixture of the Archaean complexes [e.g. Iisalmi Complex (IC)], Proterozoic supracrustal belts [e.g. Kainuu Belt (KB) and Savo Belt (SB)] and oceanic arc lithologies in the central Fennoscandian Shield. The zone was formed in the Savo orogeny when the Keitele microcontinent collided with the Archaean Karelian craton in the Palaeoproterozoic time. The crustal architecture of this palaeosuture is studied using new broad-band magnetotelluric data from 104 sites. 2-D conductivity models across the border zone between the Palaeoproterozoic Svecofennian Domain and the Archaean Karelian province are constrained using the recent, partly collocated reflection seismic data from the Finnish Reflection Experiment (FIRE). Dimensionality analyses, in particular the Q -function analysis, show that magnetotelluric data represent reasonably well regional 2-D structure at periods <100 s, which is the longest period used in this study. Strike determinations gave a stable strike of N15W. For the inversions, the data are projected into three parallel profiles with an azimuth of N75E. The determinant inversion is selected as the most suitable method for the data set. Especially the phase data are useable only from the determinant since one of the polarizations have the out-of-quadrant phase at several sites. The interpreted final, geological more appropriate models, where smoother thick conductive areas are replaced by thinner layers, are constructed from the results of the unconstrained smooth inversions with the help of forward modelling, synthetic and prior model inversions and reflection seismic models. The two major sets of crustal conductors are identified. They have an opposite dip and together they form a bowl-shaped conductor. In the west, the eastward dipping SB conductors are located at the bottom of the formation underlain by the Keitele microcontinent. The SB conductors extend to the east possibly cutting the westward dipping conductors of the KB. The conductive KB ...