Palaeomagnetism of the Lower Ordovician Orthoceras Limestone, St. Petersburg, and a revised drift history for Baltica in the early Palaeozoic

Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remane...

Full description

Bibliographic Details
Published in:Geophysical Journal International
Main Authors: Smethurst, Mark A., Khramov, Alexey N., Pisarevsky, Sergei
Format: Text
Language:English
Published: Oxford University Press 1998
Subjects:
Online Access:http://gji.oxfordjournals.org/cgi/content/short/133/1/44
https://doi.org/10.1046/j.1365-246X.1998.1331463.x
Description
Summary:Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remanent magnetization component associated with a Mesozoic remagnetization event. An apparent polar wander path is compiled for Baltica including the new result, ranging in age from Vendian to Cretaceous. Ages of the published Lower to mid-Palaeozoic palaeomagnetic pole positions are adjusted in accordance with the timescale of Tucker & McKerrow (1995). The new Arenig result is the oldest of a series of Ordovician and Silurian palaeomagnetic pole positions from limestones in the Baltic region. There are no data to constrain apparent polar wander for the Tremadoc, Cambrian and latest Vendian. If the Fen Complex results, previously taken to be Vendian in age ( c . 565 Ma), are reinterpreted as Permian remagnetizations, an Early Ordovician—Cambrian—Vendian cusp in the polar wander path for Baltica is eliminated. The apparent polar wander curve might then traverse directly from poles for Vendian dykes on the Kola peninsula ( c . 580 Ma) towards our new Arenig pole ( c . 480 Ma). The consequence of this change in terms of the motion of Baltica in Cambrian times is to reduce significantly a rotational component of movement. The new Arenig pole extends knowledge of Ordovician apparent polar wander an increment back in time and confirms the palaeolatitude and orientation of Baltica in some published palaeogeographies. Exclusion of the Fen Complex result places Baltica in mid- to high southerly latitudes at the dawn of the Palaeozoic, consistent with faunal and sedimentological evidence but at variance with some earlier palaeomagnetic reconstructions.