Does agricultural food provide a good alternative to a natural diet for body store deposition in geese?

International audience Over the past decades most goose populations have become increasingly dependent on agricultural crops during wintering and migration periods. The suitability of agricultural crops to support all nutritional requirements of migratory geese for the deposition of body stores has...

Full description

Bibliographic Details
Main Authors: Eichhorn, Götz, A. J. Meijer, H., Oosterbeek, K., Klaassen, M.
Other Authors: Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Animal Ecology Group, University of Groningen Groningen, Centre for Isotope Research Groningen (CIO), Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-00695936
Description
Summary:International audience Over the past decades most goose populations have become increasingly dependent on agricultural crops during wintering and migration periods. The suitability of agricultural crops to support all nutritional requirements of migratory geese for the deposition of body stores has been questioned; feeding on agricultural crops may yield higher rates of fat deposition at the cost of reduced protein accretion due to an unbalanced diet. We compared amino-acid composition of forage, and investigated food-habitat use and dynamics and composition of body stores deposited by barnacle geese feeding on agricultural pasture and in natural salt marsh during spring migratory preparation. Overall content and composition of amino acids was similar among forage from both habitats and appeared equally suitable for protein accretion. There was no relationship between body composition of geese and their preferred food habitat. Fat and wet protein contributed with 67% and 33%, respectively, to body stores gained at a rate of 11 g/d throughout the one-month study period. We found no evidence of impaired protein accretion in geese using agricultural grassland compared to natural salt marsh. Our study supports the hypothesis that the expansion of feeding habitat by including agricultural grassland has played an important role in the recent growth of the East Atlantic flyway population of barnacle geese and other herbivorous waterbirds. Feeding refuges of improved grassland provide geese with an adequate diet for the deposition of body stores crucial for spring migration and subsequent reproduction, thereby alleviating the conflict with agriculture.