Dive efficiency versus depth in foraging emperor penguins

International audience Dive duration generally decreases with dive depth in air-breathing vertebrates. In most penguin species, this occurs due to increasing transit (descent and ascent) durations. However, in U-shaped dives, this is also because the duration of the bottom phase of the dive increase...

Full description

Bibliographic Details
Published in:Aquatic Biology
Main Authors: Zimmer, Ilka, P. Wilson, Rory, Beaulieu, Michaël, Ropert‐coudert, Yan, Kato, Akiko, Ancel, André, Plötz, Joachim
Other Authors: Department of Bentho-pelagic processes, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute of Environmental Sustainability, Swansea University, Département Ecologie, Physiologie et Ethologie (DEPE-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), National Insitute of Polar Research, National Institute of Polar Research Tokyo (NiPR)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.science/hal-00473165
https://doi.org/10.3354/ab00213
Description
Summary:International audience Dive duration generally decreases with dive depth in air-breathing vertebrates. In most penguin species, this occurs due to increasing transit (descent and ascent) durations. However, in U-shaped dives, this is also because the duration of the bottom phase of the dive increases with increasing depth. We considered the time-based efficiency with which birds can use different diving depths by using depth recorders on 9 foraging emperor penguins Aptenodytes forsteri, studied during the early and late chick-rearing period in Adélie Land, Antarctica. Dive and post-dive duration positively correlated with diving depth, but particularly long recovery durations were apparent for dives longer than 456 s. This inflection point (i.e. 456 s) corresponded to a theorized maximum rate of gain of prey per dive cycle. By using the number of undulations in the bottom phase of the dive as a proxy for prey capture success, we conclude that the most lucrative dive depths for the birds studied were between 50 and 225 m. Since these depths were also those most often visited, we think that foraging emperor penguins focus on depths where profitability is highest.