2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El’gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spanning the past 2.8 Ma. The core reveals numerous...

Full description

Bibliographic Details
Published in:Science
Main Authors: Melles, M., Brigham‐Grette, J., Minyuk, P., Nowaczyk, N., Wennrich, V., DeConto, R., Anderson, P., Andreev, A., Coletti, A., Cook, T., Haltia‐Hovi, E., Kukkonen, M., Lozhkin, A., Rosén, P., Tarasov, P., Vogel, H., Wagner, B.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2012
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_245405
Description
Summary:The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El’gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spanning the past 2.8 Ma. The core reveals numerous “super interglacials” during the Quaternary, with maximum summer temperatures and annual precipitation during marine benthic isotope stages (MIS) 11c and 31 ~4-5°C and ~300 mm higher than those of MIS 1 and 5e. Climate simulations show these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.