Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period

High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4°S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipi...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Jaeschke, A., Rühlemann, C., Arz, H., Heil, G., Lohmann, G.
Other Authors: 5.2 Climate Dynamics and Landscape Evolution, 5.0 Earth Surface Processes, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum
Format: Article in Journal/Newspaper
Language:unknown
Published: 2007
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_236038
Description
Summary:High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4°S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6–H2 are characterized by rapid cooling of surface water ranging between 0.5° and 2°C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.