Using Fuzzy Logic for the Analysis of Sea-level Indicators with Respect to Glacial-isostatic Adjustment: An Application to the Richmond-Gulf Region, Hudson Bay

An important constraint for the inference of mantle viscosity is the variation of the Holocene relative sea-level (RSL) height (with respect to today) following the last deglaciation. As a measure of this variation, sea-level indicators (SLIs) related to the RSL heights at specific past time epochs...

Full description

Bibliographic Details
Published in:Pure and Applied Geophysics
Main Authors: Klemann, V., Wolf, D.
Other Authors: 1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum
Format: Article in Journal/Newspaper
Language:unknown
Published: 2007
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_235332
Description
Summary:An important constraint for the inference of mantle viscosity is the variation of the Holocene relative sea-level (RSL) height (with respect to today) following the last deglaciation. As a measure of this variation, sea-level indicators (SLIs) related to the RSL heights at specific past time epochs are used. For the inversion of the RSL-height change in terms of mantle viscosity, neighbouring SLIs may be grouped into an RSL diagram taken as representative for the region considered. Usually, the nominal height and age of a particular SLI are the only characteristics considered when determining the former RSL height. However, only SLIs based on isolation basins yield a narrow range for this height, whereas SLIs based on fossil samples provide a lower bound (shells), an upper bound (driftwood) or a finite interval (basal peat) for it. To also use fossil samples objectively, we develop a classification scheme of the depositional conditions based on fuzzy logic. After the definition of appropriate membership functions, this method leads to a systematic interpretation of the large number of SLIs available. We apply this method to SLIs from the Richmond-Gulf region, southeastern Hudson Bay, near the former glaciation center of Canada and derive a decay time of 5 ka for the exponential function best fitting the RSL diagram for this region.