Paleo-proxies for the thermocline and lysocline over the last glacial cycle in the Western Tropical Pacific

The shape of the thermocline and the depth of the lysoline in the western tropical Pacific are both influenced by the overlying atmosphere, and both the shape of thermocline and the depth of the lysocline can be reconstructed from foraminifera-based paleo-proxies. Paleoclimate proxy evidence suggest...

Full description

Bibliographic Details
Main Author: Leech, Peter Joseph
Other Authors: Lynch-Stieglitz, Jean, Earth and Atmospheric Sciences, Bracco, Annalisa, Cobb, Kim, Webster, Peter J., Thunell, Robert C.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Georgia Institute of Technology 2013
Subjects:
Online Access:http://hdl.handle.net/1853/49029
Description
Summary:The shape of the thermocline and the depth of the lysoline in the western tropical Pacific are both influenced by the overlying atmosphere, and both the shape of thermocline and the depth of the lysocline can be reconstructed from foraminifera-based paleo-proxies. Paleoclimate proxy evidence suggests a southward shift of the Intertropical Convergence Zone (ITCZ) during times of Northern Hemisphere cooling, including the Last Glacial Maximum (LGM), 19-23 ka before present. However, evidence for movement over the Pacific has mainly been limited to precipitation reconstructions near the continents, and the position of the Pacific marine ITCZ is less well constrained. In this study, I address this problem by taking advantage of the fact that the upper ocean density structure reflects the overlying wind field. I reconstruct changes in the upper ocean density structure during the LGM using oxygen isotope measurements on the planktonic foraminifera G. ruber and G. tumida in a transect of sediment cores from the Western Tropical Pacific. The data suggest a ridge in the thermocline just north of the present-day ITCZ persists for at least part of the LGM, and a structure in the Southern Hemisphere that differs from today. The reconstructed structure is consistent with that produced in a General Circulation Model with both a Northern and Southern Hemisphere ITCZ. I also attempt to reconstruct the upper ocean density structure for Marine Isotope Stages 5e and 6, the interglacial and glacial periods, respectively, previous to the LGM. The data show a Northern Hemisphere thermocline ridge for both of these periods. There is insufficient data to draw any conclusions about the Southern Hemisphere thermocline. Using the same set of sediment cores, I also attempt to reconstruct lysocline depth over the last 23,000 years using benthic foraminiferal carbon isotope ratios, planktonic foraminiferal masses, and sediment coarse fraction percentage. Paleoclimate proxy evidence and modeling studies suggest that the deglaciation following the LGM is associated with a deepening of the lysocline and an increase in sedimentary calcite preservation. Although my data lack the resolution to constrain the depth of the lysocline, they do show an increase in calcite preservation during the last deglaciation, consistent with lysocline deepening as carbon moves from the deep ocean to the atmosphere. Ph.D.