Planktonic propulsion: the hydrodynamics, kinematics, and design of metachrony

Locomotion is a key characteristic of almost all forms of life and is often accomplished, whether on land, in water, or in the air, by reciprocal motion of two or more appendages. Among the zooplankton, many species propel themselves by rhythmically beating multiple pairs of closely spaced leg-like...

Full description

Bibliographic Details
Main Author: Murphy, David W.
Other Authors: Webster, Donald R., Yen, Jeannette, Civil and Environmental Engineering, David Hu, Meghan Duffy, Philip Roberts, Silas Alben
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: Georgia Institute of Technology 2012
Subjects:
Online Access:http://hdl.handle.net/1853/44860
Description
Summary:Locomotion is a key characteristic of almost all forms of life and is often accomplished, whether on land, in water, or in the air, by reciprocal motion of two or more appendages. Among the zooplankton, many species propel themselves by rhythmically beating multiple pairs of closely spaced leg-like appendages in a back-to-front (metachronal) pattern. The focus of this study is to understand the mechanical design, kinematic operation, and hydrodynamic result of metachrony in the zooplankton. In the first part of this study, Antarctic krill (Euphausia superba) are investigated as an ecologically important model species that metachronally beats its swimming legs (pleopods) to perform drag-based propulsion. Based on high speed videos of freely swimming Antarctic krill, hovering, fast forward swimming, and upside down swimming are identified as three distinct swimming modes with significantly different stroke amplitudes and beat frequencies. When transitioning between hovering and fast forward swimming, Antarctic krill first increase beat amplitude and secondarily increase beat frequency. In considering the design components that contribute to metachrony being a successful swimming technique, a comparison among many different species shows that the ratio between the appendage separation distance and appendage length is limited to a narrow range of values (i.e. 0.2 - 0.65). In the second part of this study, metachrony is examined at smaller length and time scales by examining the impulsive escape jump of a calanoid copepod (Calanus finmarchicus). The wake generated by the copepod's metachronally beating swimming legs is experimentally measured using a novel (and newly developed) tomographic particle image velocimetry (PIV) system capable of making volumetric 3D velocity measurements with high temporal and spatial resolution using IR illumination. The flow generated by the escaping copepod consisted of a stronger posterior vortex ring generated by the metachronally stroking swimming legs and a weaker one generated ...