Climate change & the physiology, ecology, and behavior of coral reef organisms

The magnitude of ocean acidification (OA) and warming predicted to occur within the next century could have significant negative effects for organisms that inhabit coral reefs. Our understanding of how these stressors will impact coral reef organisms is complicated by the diverse behavioral and ecol...

Full description

Bibliographic Details
Main Author: Johnston, Nicole K.
Other Authors: Hay, Mark E., Kubanek, Julia, Stewart, Frank, Jiang, Lin, Paul, Valerie, Biology
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Georgia Institute of Technology 2020
Subjects:
Online Access:http://hdl.handle.net/1853/62777
Description
Summary:The magnitude of ocean acidification (OA) and warming predicted to occur within the next century could have significant negative effects for organisms that inhabit coral reefs. Our understanding of how these stressors will impact coral reef organisms is complicated by the diverse behavioral and ecological interactions that exist on these reefs. In a series of experiments, I explored interactions between coral reef organisms, evaluated how some of these interactions may be affected by OA and warming, and then studied how environment may shape an organism’s response to a changing climate. First, through a sensory manipulated tank and a twochamber choice flume, I demonstrated that anemonefish respond to both chemical and visual conspecific cues, but they require a combination of these two cues to correctly identify conspecifics. Given that previous research indicates that fish behavioral responses to chemical cues are altered under conditions of future OA, this inability to compensate for the loss of one cue through a second cue could affect their ability to acclimate as climate changes. Second, I found that the common Caribbean mounding coral Porites astreoides, is unaffected by competition with Montastraea cavernosa and Orbicella faveolata under ambient environmental conditions, but exhibits significant reductions in photosynthetic efficiency in areas of direct contact with M. cavernosa and O. faveolata under conditions of elevated CO2 and temperature that are anticipated to occur by the year 2100. These results demonstrated that climate change can interact with competition to alter the rate and severity of coral-coral interactions on reefs of the future. Next, I compared the effects of OA and warming on the physiology of two congeneric coral species (Oculina arbuscula and Oculina diffusa) representing temperate (O. arbuscula) and tropical (O. diffusa) environments and found that, although both corals were negatively impacted by ocean acidification and warming, the temperate coral was slightly more resistant to ...