Modelling the Asian Paleo-hydroclimatic Variability

Using a multi-proxy and multi-model approach, this study aims to unravel the characteristics of modern- and palaeo-hydroclimatic variability over Asia. This is designed on different time-scales and diverse geographically distributed regions in Asia. Special emphasis is given to extreme hydro- meteor...

Full description

Bibliographic Details
Main Author: Fallah Hassanabadi, Bijan
Other Authors: bijan.fallah@gmail.com, m, Prof. Dr. Ulrich Cubasch, PD. Dr. Sushma Prasad
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2015
Subjects:
Online Access:https://refubium.fu-berlin.de/handle/fub188/5581
https://doi.org/10.17169/refubium-9780
https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000099409-0
Description
Summary:Using a multi-proxy and multi-model approach, this study aims to unravel the characteristics of modern- and palaeo-hydroclimatic variability over Asia. This is designed on different time-scales and diverse geographically distributed regions in Asia. Special emphasis is given to extreme hydro- meteorological events (e.g., mega-droughts). The main focus of this investigation is on climatically sensitive regions of Asia (e.g., monsoon- dominated and westerly-dominated regions). The combination of different model and proxy data leads to an enhanced understanding of the controlling mechanisms of the Asian climate dynamics. In this thesis, palaeoclimate simulations of different time-slices are carried out for selected time periods. The main focus lies in global and regional model simulations, as well as the sensitivity tests using these models. In a first step, existing global simulations for the past 1,000 years are analyzed, concentrating on dynamics of Asian monsoon and Westerlies, and on climate modes like El Niño Southern Oscillation (ENSO), Pacific North Atlantic Oscillation (PNA) and North Atlantic Oscillation (NAO) and their tele-connections with the Asian climate. In this regard, two Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) / Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensemble simulations of the past millennium have been analyzed to identify the occurrence of Asian mega-droughts. The Palmer Drought Severity Index (PDSI) is used as the key metric for the data comparison of hydro-climatological conditions. The model results are compared with the proxy data of the Monsoon Asia Drought Atlas (MADA). This study shows that Global Circulation Models (GCMs) are capable to capture the majority of historically recorded Asian monsoon failures at the right time and with a comparable spatial distribution. The simulations indicate that ENSO-like events lead in most cases to these droughts. Both, model simulations and proxy reconstructions, point to less monsoon failures ...