A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations

Studies concerning solar–terrestrial connections over the last decades claim to have found evidence that the quasi-decadal solar cycle can have an influence on the dynamics in the middle atmosphere in the Northern Hemisphere (NH) during the winter season. It has been argued that feedbacks between th...

Full description

Bibliographic Details
Main Authors: Spiegl, Tobias C., Langematz, Ulrike, Pohlmann, Holger, Kröger, Jürgen
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://refubium.fu-berlin.de/handle/fub188/41272
https://doi.org/10.17169/refubium-40993
https://doi.org/10.5194/wcd-4-789-2023
Description
Summary:Studies concerning solar–terrestrial connections over the last decades claim to have found evidence that the quasi-decadal solar cycle can have an influence on the dynamics in the middle atmosphere in the Northern Hemisphere (NH) during the winter season. It has been argued that feedbacks between the intensity of the UV part of the solar spectrum and low-latitude stratospheric ozone may produce anomalies in meridional temperature gradients which have the potential to alter the zonal-mean flow in middle to high latitudes. Interactions between the zonal wind and planetary waves can lead to a downward propagation of the anomalies, produced in the middle atmosphere, down to the troposphere. More recently, it has been proposed that top-down-initiated decadal solar signals might modulate surface climate and synchronize the North Atlantic Oscillation. A realistic representation of the solar cycle in climate models was suggested to significantly enhance decadal prediction skill. These conclusions have been debated controversial since then due to the lack of realistic decadal prediction model setups and more extensive analysis. In this paper we aim for an objective and improved evaluation of possible solar imprints from the middle atmosphere to the surface and with that from head to toe. Thus, we analyze model output from historical ensemble simulations conducted with the state-of-the-art Max Planck Institute for Meteorology Earth System Model in high-resolution configuration (MPI-ESM-HR). The target of these simulations was to isolate the most crucial model physics to foster basic research on decadal climate prediction and to develop an operational ensemble decadal prediction system within the “Mittelfristige Klimaprognose” (MiKlip) framework. Based on correlations and multiple linear regression analysis we show that the MPI-ESM-HR simulates a realistic, statistically significant and robust shortwave heating rate and temperature response at the tropical stratopause, in good agreement with existing studies. However, the ...