The effect of environmental differences on the immune response of rodents
In comparison with medical immunology, which focuses on mechanistic descriptions of defense mechanisms against pathogens and parasites, ecological immunology hypothesizes that variation in immune defense, both within and among species, is a result of biotic and abiotic factors of an animal’s environ...
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://refubium.fu-berlin.de/handle/fub188/2144 https://doi.org/10.17169/refubium-6346 https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000101074-1 |
Summary: | In comparison with medical immunology, which focuses on mechanistic descriptions of defense mechanisms against pathogens and parasites, ecological immunology hypothesizes that variation in immune defense, both within and among species, is a result of biotic and abiotic factors of an animal’s environment. Macro-environment can greatly influence immunity in terms of both resources and pathogen pressure. In this thesis, I attempted to compare the immunity of animals living in different human-influenced environmental gradients. By using different study designs (comparative, experimental and correlative approaches), I examined whether captivity, colonization history and urbanization have an effect on the immunity of rodents. Rodents constitute the most diverse group of mammals, accounting for over 40% of all the extant mammalian species. They are one of the most important reservoirs for zoonotic emerging pathogens due in part to their life-history traits (e.g., short lifespan with multiple litters) and close proximity to human populations. Moreover, the vast majority of immunological knowledge has been generated by studies on laboratory model rodents (e.g., house mouse Mus musculus, lab rats Rattus rattus and R. norvegicus), and the developed immunological techniques and tools can be generally applied to free-living conspecifics. Previous comparative eco-immunological studies have suggested that mating promiscuity is one of the main factors explaining the variation in basal immune investment (total and differential white blood cell (WBC) counts) in captive primates and carnivores. In Chapter 2, I examined whether this conclusion is generalizable to other mammalian groups, how the observed patterns are related to the living environment and if there are differences between free-living and captive animals. Using phylogenetic generalized least-squares statistical models considering non-independence resulting from shared ancestry, I confirmed that species with greater adult body mass averaged across sexes had elevated ... |
---|