Table_1_Genomic Insight Into the Predominance of Candidate Phylum Atribacteria JS1 Lineage in Marine Sediments.DOCX

Candidate phylum Atribacteria JS1 lineage is one of the predominant bacterial groups in anoxic subseafloor sediments, especially in organic-rich or gas hydrate-containing sediments. However, due to the lack of axenic culture representatives, metabolic potential and biogeochemical roles of this phylu...

Full description

Bibliographic Details
Main Authors: Yung Mi Lee, Kyuin Hwang, Jae Il Lee, Mincheol Kim, Chung Yeon Hwang, Hyun-Ju Noh, Hakkyum Choi, Hong Kum Lee, Jongsik Chun, Soon Gyu Hong, Seung Chul Shin
Format: Dataset
Language:unknown
Published: 2018
Subjects:
JS1
Online Access:https://doi.org/10.3389/fmicb.2018.02909.s004
https://figshare.com/articles/Table_1_Genomic_Insight_Into_the_Predominance_of_Candidate_Phylum_Atribacteria_JS1_Lineage_in_Marine_Sediments_DOCX/7397174
Description
Summary:Candidate phylum Atribacteria JS1 lineage is one of the predominant bacterial groups in anoxic subseafloor sediments, especially in organic-rich or gas hydrate-containing sediments. However, due to the lack of axenic culture representatives, metabolic potential and biogeochemical roles of this phylum have remained elusive. Here, we examined the microbial communities of marine sediments of the Ross Sea, Antarctica, and found candidate phylum Atribacteria JS1 lineage was the most abundant candidate phylum accounting for 9.8–40.8% of the bacterial communities with a single dominant operational taxonomic unit (OTU). To elucidate the metabolic potential and ecological function of this species, we applied a single-cell genomic approach and obtained 18 single-cell amplified genomes presumably from a single species that was consistent with the dominant OTU throughout the sediments. The composite genome constructed by co-assembly showed the highest genome completeness among available Atribacteria JS1 genomes. Metabolic reconstruction suggested fermentative potential using various substrates and syntrophic acetate oxidation coupled with hydrogen or formate scavenging methanogens. This metabolic potential supports the predominance of Atribacteria JS1 in anoxic environments expanding our knowledge of the ecological function of this uncultivated group.