Summary: | Large portions of the world ocean are less productive than they should be based on their nutrient concentrations. Dubbed high-nutrient low-chlorophyll (HNLC) regions, primary productivity in these areas may be limited by any number of factors including high zooplankton grazing rates as well as light and silicon limitation but, in general, iron (Fe) appears to most often be the factor limiting production. With approximately 30% of the world ocean comprised of Fe-limited HNLC waters, it is clear that the input of Fe to these waters, and its subsequent bioavailability, has an important role in stimulating primary productivity and lowering pCO2 possibly moderating the rise of atmospheric CO2 concentrations and therefore could influence the planet's climate. The work described in this dissertation represents an effort to characterize the elemental solubility, including Fe, of marine aerosols. The research was conducted on four oceanographic research cruises in the North Atlantic and Pacific Oceans. In total, over 170 aerosol samples were collected in both total and size-fractionated samples. Precipitation events were sampled when possible to characterize the wet deposition of marine aerosols. The data will constrain estimates of aerosol Fe deposition to HNLC regions and improve models of the global carbon cycle. Elemental solubilities were measured using both seawater and ultrapure deionized water leaching methods under trace metal clean conditions. Leaching of the aerosol samples was conducted using a rapid exposure, small volume technique. Ultrapure deionized water leaches were analyzed directly by high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS), a relatively simple analysis technique. Soluble Fe in seawater leaches was analyzed by HR-ICP-MS following column extraction. Additionally, soluble aerosol Fe(II) was measured on four of the cruises. The sampling and analytical methods will be discussed in this dissertation and the results compared with similar studies of aerosol chemistry. The ...
|