The Influence of Spectral Solar Irradiance and Energetic Particle Precipitation on Climate

Solar activity has been driving changes in Earth’s climate throughout history. However, since the 1970s, the emissions of greenhouse gases by human activities have become the dominant factor of climate change. Today, global warming is one of the main challenges of the modern society. On centennial t...

Full description

Bibliographic Details
Main Author: Arsenović, Pavle
Other Authors: Thomas, Peter, Rozanov, Eugene, Verronen, Pekka T.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: ETH Zurich 2017
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/215269
https://doi.org/10.3929/ethz-b-000215269
Description
Summary:Solar activity has been driving changes in Earth’s climate throughout history. However, since the 1970s, the emissions of greenhouse gases by human activities have become the dominant factor of climate change. Today, global warming is one of the main challenges of the modern society. On centennial time-scales, the solar contribution could still be important for climate. A factor closely related with solar activity is energetic particle precipitation. The impact of energetic particles on atmospheric composition and climate is relatively new area of research. Our aim is: (i) to investigate the influence of solar activity on terrestrial climate during the long term solar changes and (ii) to investigate the impact of energetic particle precipitation, specifically electrons, on atmospheric chemistry and climate. For these purposes we are using SOCOL3-MPIOM chemistry-climate model with interactive ocean. Measurement data from atmospheric monitoring stations shows a significant temperature increase During the early 20th century (1910 – 1940). This period coincided with an increase in both greenhouse gases and solar activity. To determine the main driver for the temperature increase we conducted a comprehensive model study. We considered separately solar UV radiation, solar visible and infrared radiation, energetic particle precipitation, greenhouse gases, ozone precursors, and volcanic eruptions. Globally, our results suggest that the surface warming was mostly induced by increase in concentrations of greenhouse gases. In Europe, however, this temperature increase may have been dominated by an increase of ozone precursors emissions (CO and NOx). The solar radiation in visible and infrared wavebands produced a smaller, yet detectable contribution in temperature trends, especially around Labrador Sea. In 1970s, some human-emitted substances were found to be depleting ozone layer. This was confirmed by observations and an ozone hole over Antarctica was found leading to the prohibition of ozone depleting substances ...