Changing Plankton Communities: Causes, Effects and Consequences

Marine ecosystems are changing in response to multiple stressors such as global warming, increasing carbon dioxide (CO2) and decreasing oxygen (O2) concentrations and eutrophication of coastal waters, among others. The direct effects of these changes on plankton physiology have been studied for deca...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Spilling, Kristian, Tedesco, Letizia, Klais, Riina, Olli, Kalle
Format: Article in Journal/Newspaper
Language:unknown
Published: Frontiers 2019
Subjects:
Online Access:http://hdl.handle.net/10492/7924
https://doi.org/10.3389/fmars.2019.00272
Description
Summary:Marine ecosystems are changing in response to multiple stressors such as global warming, increasing carbon dioxide (CO2) and decreasing oxygen (O2) concentrations and eutrophication of coastal waters, among others. The direct effects of these changes on plankton physiology have been studied for decades; less are known about possible effects these changes might have on the composition of plankton communities, and even less about what effects any such shift in plankton community composition will have on marine ecosystems. The plankton community makes up the base of the marine food web (i.e., primary producers, decomposers, and primary consumers) and plays a pivotal role in global biogeochemical cycles (e.g., Falkowski and Raven, 2013). Any change of the plankton community structure, driven by natural or human induced changes, may consequently have indirect effects on marine ecosystem functioning. This Research Topic focused on causes, effects and consequences of changing composition of plankton communities. The 12 contributions to this volume include seven original research papers, one method paper, and four reviews; all touching the state-of-the-art in current plankton research, and each from a complementary angle. Several of the original research papers deal with changing phytoplankton communities, environmental drivers and ecosystem effects. Fernández-Méndez et al. analyzed sea-ice ridges and the snow-ice interface, which are algal hotspots in the Arctic Ocean. Both sea-ice ridges and the snow-ice interface are projected to increase due to thinning of the ice, and Fernández-Méndez et al. described the algal communities, mostly dominated by different diatoms, in these habitats in the Arctic. von Scheibner et al. examined the phytoplankton and bacterioplankton response to short-term warming. Warming increased carbon availability for the bacterial community, but the ratio between bacterial and primary production was still relatively low, suggesting it is not much changed by short-term warming events. Cohen et al. ...