Leveraging RALI‐THINICE Observations to Assess How the ICOLMDZ Model Simulates Clouds Embedded in Arctic Cyclones

International audience Despitetheiressentialroleinthehigh‐latitudeclimate,therepresentationofmixed‐phasecloudsis still a challenge for Global Climate Models (GCMs)'s cloud schemes. In this study we propose a methodology for robustly assessing Arctic mixed‐phase cloud properties in a climate mod...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Raillard, Lea, Vignon, Étienne, Rivière, Gwendal, Madeleine, Jean‐baptiste, Meurdesoif, Yann, Delanoë, Julien, Caubel, Arnaud, Jourdan, Olivier, Baudoux, Antoine, Fromang, Sébastien, Conesa, Philippe
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Calcul Scientifique (CALCULS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Modélisation du climat (CLIM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2024
Subjects:
Online Access:https://insu.hal.science/insu-04671704
https://insu.hal.science/insu-04671704v1/document
https://insu.hal.science/insu-04671704v1/file/JGR%20Atmospheres%20-%202024%20-%20Raillard%20-%20Leveraging%20.pdf
https://doi.org/10.1029/2024jd040973
Description
Summary:International audience Despitetheiressentialroleinthehigh‐latitudeclimate,therepresentationofmixed‐phasecloudsis still a challenge for Global Climate Models (GCMs)'s cloud schemes. In this study we propose a methodology for robustly assessing Arctic mixed‐phase cloud properties in a climate model using airborne measurements. We leverage data collected during the RALI‐THINICE airborne campaign that took place near Svalbard in August 2022 to evaluate the simulation of mid‐level clouds associated with Arctic cyclones. Simulations are carried out with the new limited‐area configuration of the ICOLMDZ model which combines the recent icosahedral dynamical core DYNAMICO and the physics of LMDZ, the atmospheric component of the IPSL‐CM Earth System Model. Airborne radar and microphysical probes measurements are then used to evaluate the simulated clouds. A comparison method has been set‐up to guarantee as much as possible the spatiotemporal co‐location between observed and simulated cloud fields. We mostly focus on the representation of ice and liquid in‐cloud contents and on their vertical distribution. Results show that the model overestimates the amount of cloud condensates and exhibits a poor cloud phase spatial distribution, with too much liquid water far from cloud top and too much ice close to it. The downward gradual increase in snowfall flux is also not captured by the model. This in‐ depth model evaluation thereby pinpoints priorities for further improvements in the ICOLMDZ cloud scheme.