Roman Warm Period and Late Antique Little Ice Age in an Earth System Model Large Ensemble

International audience Changes in climate during the Roman Warm Period (RWP, 1-250 CE) and Late Antique Little Ice Age (LALIA, 536-660 CE) play a critical role in early societal evolution, but the climate differences between these two periods and the possible causes of the changes remain poorly expl...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Shi, Feng, Sun, Cheng, Guion, Antoine, Yin, Qiuzhen, Zhao, Sen, Liu, Ting, Guo, Zhengtang
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03778092
https://insu.hal.science/insu-03778092/document
https://insu.hal.science/insu-03778092/file/JGR%20Atmospheres%20-%202022%20-%20Shi%20-%20Roman%20Warm%20Period%20and%20Late%20Antique%20Little%20Ice%20Age%20in%20an%20Earth%20System%20Model%20Large%20Ensemble.pdf
https://doi.org/10.1029/2021JD035832
Description
Summary:International audience Changes in climate during the Roman Warm Period (RWP, 1-250 CE) and Late Antique Little Ice Age (LALIA, 536-660 CE) play a critical role in early societal evolution, but the climate differences between these two periods and the possible causes of the changes remain poorly explored. Here we use the LOch-Vecode-Ecbilt-CLio-agIsM model Large Common Era Ensemble with 70 members to examine the climate change over these two intervals and compare the results of this ensemble with the latest temperature reconstructions from the Past Global Changes 2k network and the transient simulation for the past 2,000 years from the Community Earth System Model. Results from both proxy reconstructions and climate model simulations show warming in mid-to-high latitudes of the Northern Hemisphere (NH) during the RWP compared with the LALIA. This is likely linked with the increased radiative forcing associated with weaker volcanic eruptions in the RWP, which results in reduced sea ice area and pronounced high-latitude warming through surface albedo and lapse-rate feedbacks. This increases the upper ocean heat content over centennial time scales to maintain warming over the NH high-latitude regions. Moreover, the RWP has drier (wetter) conditions in the eastern (western) equatorial Pacific than the LALIA, and this is related to the zonal sea surface temperature gradient in the equatorial Pacific through modification of the zonal circulation.