The simulation of the Antarctic ozone hole by chemistry-climate models

International audience While chemistry-climate models are able to reproduce many characteristics of the global total column ozone field and its long-term evolution, they have fared less well in simulating the commonly used diagnostic of the area of the Antarctic ozone hole i.e. the area within the 2...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Struthers, H., Bodeker, G.E., Austin, J., Bekki, Slimane, Cionni, I., Dameris, M., Giorgetta, M.A., Grewe, V., Lefèvre, Franck, Lott, F., Manzini, E., Peter, T., Rozanov, E., Schraner, M.
Other Authors: National Institute of Water and Atmospheric Research Lauder (NIWA), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics (IPA), Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR), Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Bologna (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Centro Euro-Mediterraneo per i Cambiamenti Climatici Bologna (CMCC), Institute for Atmospheric and Climate Science Zürich (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich), Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2009
Subjects:
Online Access:https://hal.science/hal-00414772
https://hal.science/hal-00414772/document
https://hal.science/hal-00414772/file/acp-9-6363-2009.pdf
https://doi.org/10.5194/acp-9-6363-2009
Description
Summary:International audience While chemistry-climate models are able to reproduce many characteristics of the global total column ozone field and its long-term evolution, they have fared less well in simulating the commonly used diagnostic of the area of the Antarctic ozone hole i.e. the area within the 220 Dobson Unit (DU) contour. Two possible reasons for this are: (1) the underlying Global Climate Model (GCM) does not correctly simulate the size of the polar vortex, and (2) the stratospheric chemistry scheme incorporated into the GCM, and/or the model dynamics, results in systematic biases in the total column ozone fields such that the 220 DU contour is no longer appropriate for delineating the edge of the ozone hole. Both causes are examined here with a view to developing ozone hole area diagnostics that better suit measurement-model inter-comparisons. The interplay between the shape of the meridional mixing barrier at the edge of the vortex and the meridional gradients in total column ozone across the vortex edge is investigated in measurements and in 5 chemistry-climate models (CCMs). Analysis of the simulation of the polar vortex in the CCMs shows that the first of the two possible causes does play a role in some models. This in turn affects the ability of the models to simulate the large observed meridional gradients in total column ozone. The second of the two causes also strongly affects the ability of the CCMs to track the observed size of the ozone hole. It is shown that by applying a common algorithm to the CCMs for selecting a delineating threshold unique to each model, a more appropriate diagnostic of ozone hole area can be generated that shows better agreement with that derived from observations.