Sampling device-dependence of prokaryotic community structure on marine particles: Higher diversity recovered by in situ pumps than by oceanographic bottles
Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collec...
Main Authors: | , , , |
---|---|
Format: | Text |
Language: | unknown |
Published: |
Edith Cowan University, Research Online, Perth, Western Australia
2020
|
Subjects: | |
Online Access: | https://ro.ecu.edu.au/ecuworkspost2013/8299 https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=9305&context=ecuworkspost2013 |
Summary: | Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collection and processing of samples that may result in changes in particle-attached microbial communities. Conversely, in situ water filtration through submersible pumps allows a faster storage of sampled particles, but it has rarely been used to study the associated microbial communities and has never been compared to other particle-sampling methods in terms of the recovery of particle microbial diversity. Here we compared the prokaryotic communities attached to small (1–53 mm) and large ( > 53 mm) particles collected from the mesopelagic zone (100– 300 m) of two Antarctic polynyas using in situ pumps (ISP) and oceanographic bottles (BTL). Each sampling method retrieved largely different particle-attached communities, suggesting that they capture different kinds of particles. These device-driven differences were greater for large particles than for small particles. Overall, the ISP recovered 1.5- to 3-fold more particle-attached bacterial taxa than the BTL, and different taxonomic groups were preferentially recovered by each method. In particular, typical particle-attached groups such as Planctomycetes and Deltaproteobacteria recovered with ISP were nearly absent from BTL samples. Our results suggest that the method used to sample marine particles has a strong influence in our view of their associated microbial communities. |
---|