Widespread shallow mesoscale circulations observed in the trades

International audience Abstract Understanding the drivers of cloud organization is crucial for accurately estimating cloud feedbacks and their contribution to climate warming. Shallow mesoscale circulations are thought to play an important role in cloud organization, but they have not been observed....

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: George, Geet, Stevens, Bjorn, Bony, Sandrine, Vogel, Raphaela, Naumann, Ann Kristin
Other Authors: Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04306817
https://hal.science/hal-04306817/document
https://hal.science/hal-04306817/file/s41561-023-01215-1.pdf
https://doi.org/10.1038/s41561-023-01215-1
Description
Summary:International audience Abstract Understanding the drivers of cloud organization is crucial for accurately estimating cloud feedbacks and their contribution to climate warming. Shallow mesoscale circulations are thought to play an important role in cloud organization, but they have not been observed. Here we present observational evidence for the existence of shallow mesoscale overturning circulations using divergence measurements made during the EUREC 4 A field campaign in the North Atlantic trades. Meteorological re-analyses reproduce the observed low-level divergence well and confirm the circulations to be mesoscale features (around 200 km across). We find that the shallow mesoscale circulations are associated with large variability in mesoscale vertical velocity and amplify moisture variance at the cloud base. Through their modulation of cloud-base moisture, the circulations influence how efficiently the subcloud layer dries, thus producing moist ascending branches and dry descending branches. The observed moisture variance differs from expectations from large-eddy simulations, which show the largest variance near the cloud top and negligible subcloud variance. The ubiquity of shallow mesoscale circulations, and their coupling to moisture and cloud fields, suggests that the strength and scale of mesoscale circulations are integral to determining how clouds respond to climate change.